9 research outputs found

    Automatic Diagnosis for Prostate Cancer Using Run-Length Matrix Method

    Get PDF
    Prostate cancer is the most common type of cancer and the second leading cause of cancer death among men in US1. Quantitative assessment of prostate histology provides potential automatic classification of prostate lesions and prediction of response to therapy. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. In this application, we utilize a texture analysis method based on the run-length matrix for identifying tissue abnormalities in prostate histology. A tissue sample was collected from a radical prostatectomy, H&E fixed, and assessed by a pathologist as normal tissue or prostatic carcinoma (PCa). The sample was then subsequently digitized at 50X magnification. We divided the digitized image into sub-regions of 20 X 20 pixels and classified each sub-region as normal or PCa by a texture analysis method. In the texture analysis, we computed texture features for each of the sub-regions based on the Gray-level Run-length Matrix(GL-RLM). Those features include LGRE, HGRE and RPC from the run-length matrix, mean and standard deviation of the pixel intensity. We utilized a feature selection algorithm to select a set of effective features and used a multi-layer perceptron (MLP) classifier to distinguish normal from PCa. In total, the whole histological image was divided into 42 PCa and 6280 normal regions. Three-fold cross validation results show that the proposed method achieves an average classification accuracy of 89.5% with a sensitivity and specificity of 90.48% and 89.49%, respectively

    Validating Pareto Optimal Operation Parameters of Polyp Detection Algorithms for CT Colonography

    Get PDF
    We evaluated a Pareto front-based multi-objective evolutionary algorithm for optimizing our CT colonography (CTC) computer-aided detection (CAD) system. The system identifies colonic polyps based on curvature and volumetric based features, where a set of thresholds for these features was optimized by the evolutionary algorithm. We utilized a two-fold cross-validation (CV) method to test if the optimized thresholds can be generalized to new data sets. We performed the CV method on 133 patients; each patient had a prone and a supine scan. There were 103 colonoscopically confirmed polyps resulting in 188 positive detections in CTC reading from either the prone or the supine scan or both. In the two-fold CV, we randomly divided the 133 patients into two cohorts. Each cohort was used to obtain the Pareto front by a multi-objective genetic algorithm, where a set of optimized thresholds was applied on the test cohort to get test results. This process was repeated twice so that each cohort was used in the training and testing process once. We averaged the two training Pareto fronts as our final training Pareto front and averaged the test results from the two runs in the CV as our final test results. Our experiments demonstrated that the averaged testing results were close to the mean Pareto front determined from the training process. We conclude that the Pareto front-based algorithm appears to be generalizable to new test data

    Adjacent Slice Prostate Cancer Prediction to Inform MALDI Imaging Biomarker Analysis

    Get PDF
    Prostate cancer is the second most common type of cancer among men in US [1]. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. Proteomic biomarkers can improve upon these methods. MALDI molecular spectra imaging is used to visualize protein/peptide concentrations across biopsy samples to search for biomarker candidates. Unfortunately, traditional processing methods require histopathological examination on one slice of a biopsy sample while the adjacent slice is subjected to the tissue destroying desorption and ionization processes of MALDI. The highest confidence tumor regions gained from the histopathological analysis are then mapped to the MALDI spectra data to estimate the regions for biomarker identification from the MALDI imaging. This paper describes a process to provide a significantly better estimate of the cancer tumor to be mapped onto the MALDI imaging spectra coordinates using the high confidence region to predict the true area of the tumor on the adjacent MALDI imaged slice

    Increase in perceived case suspiciousness due to local contrast optimisation in digital screening mammography

    Get PDF
    Item does not contain fulltextOBJECTIVES: To determine the influence of local contrast optimisation on diagnostic accuracy and perceived suspiciousness of digital screening mammograms. METHODS: Data were collected from a screening region in the Netherlands and consisted of 263 digital screening cases (153 recalled,110 normal). Each case was available twice, once processed with a tissue equalisation (TE) algorithm and once with local contrast optimisation (PV). All cases had digitised previous mammograms. For both algorithms, the probability of malignancy of each finding was scored independently by six screening radiologists. Perceived case suspiciousness was defined as the highest probability of malignancy of all findings of a radiologist within a case. Differences in diagnostic accuracy of the processing algorithms were analysed by comparing the areas under the receiver operating characteristic curves (A(z)). Differences in perceived case suspiciousness were analysed using sign tests. RESULTS: There was no significant difference in A(z) (TE: 0.909, PV 0.917, P = 0.46). For all radiologists, perceived case suspiciousness using PV was higher than using TE more often than vice versa (ratio: 1.14-2.12). This was significant (P <0.0083) for four radiologists. CONCLUSIONS: Optimisation of local contrast by image processing may increase perceived case suspiciousness, while diagnostic accuracy may remain similar. KEY POINTS: Variations among different image processing algorithms for digital screening mammography are large. Current algorithms still aim for optimal local contrast with a low dynamic range. Although optimisation of contrast may increase sensitivity, diagnostic accuracy is probably unchanged. Increased local contrast may render both normal and abnormal structures more conspicuous.1 april 201

    Prediction of brain tumor progression using a machine learning technique

    No full text
    A machine learning technique is presented for assessing brain tumor progression by exploring six patients\u27 complete MRI records scanned during their visits in the past two years. There are ten MRI series, including diffusion tensor image (DTI), for each visit. After registering all series to the corresponding DTI scan at the first visit, annotated normal and tumor regions were overlaid. Intensity value of each pixel inside the annotated regions were then extracted across all of the ten MRI series to compose a 10 dimensional vector. Each feature vector falls into one of three categories:normal, tumor, and normal but progressed to tumor at a later time. In this preliminary study, we focused on the trend of brain tumor progression during three consecutive visits, i.e., visit A, B, and C. A machine learning algorithm was trained using the data containing information from visit A to visit B, and the trained model was used to predict tumor progression from visit A to visit C. Preliminary results showed that prediction for brain tumor progression is feasible. An average of 80.9% pixel-wise accuracy was achieved for tumor progression prediction at visit C

    Effect of soft-copy display supported by CAD on mammography screening performance.

    No full text
    Contains fulltext : 50237.pdf (publisher's version ) (Closed access)Diagnostic performance and reading speed for conventional mammography film reading is compared to reading digitized mammograms on a dedicated workstation. A series of mammograms judged negative at screening and corresponding priors were collected. Half were diagnosed as cancer at the next screening, or earlier for interval cancers. The others were normal. Original films were read by fifteen experienced screening radiologists. The readers annotated potential abnormalities and estimated their likelihood of malignancy. More than 1 year later, five radiologists reread a subset of 271 cases (88 cancer cases having visible signs in retrospect and 183 normals) on a mammography workstation after film digitization. Markers from a computer-aided detection (CAD) system for microcalcifications were available to the readers. Performance was evaluated by comparison of A(z)-scores based on ROC and multiple-Reader multiple-case (MRMC) analysis, and localized receiver operating characteristic (LROC) analysis for the 271 cases. Reading speed was also determined. No significant difference in diagnostic performance was observed between conventional and soft-copy reading. Average A(z)-scores were 0.83 and 0.84 respectively. Soft-copy reading was only slightly slower than conventional reading. Using a mammography workstation including CAD for detection of microcalcifications, soft-copy reading is possible without loss of quality or efficiency

    Standalone computer-aided detection compared to radiologists' performance for the detection of mammographic masses

    No full text
    Item does not contain fulltextOBJECTIVES: We developed a computer-aided detection (CAD) system aimed at decision support for detection of malignant masses and architectural distortions in mammograms. The effect of this system on radiologists' performance depends strongly on its standalone performance. The purpose of this study was to compare the standalone performance of this CAD system to that of radiologists. METHODS: In a retrospective study, nine certified screening radiologists and three residents read 200 digital screening mammograms without the use of CAD. Performances of the individual readers and of CAD were computed as the true-positive fraction (TPF) at a false-positive fraction of 0.05 and 0.2. Differences were analysed using an independent one-sample t-test. RESULTS: At a false-positive fraction of 0.05, the performance of CAD (TPF?=?0.487) was similar to that of the certified screening radiologists (TPF?=?0.518, P?=?0.17). At a false-positive fraction of 0.2, CAD performance (TPF?=?0.620) was significantly lower than the radiologist performance (TPF?=?0.736, P <0.001). Compared to the residents, CAD performance was similar for all false-positive fractions. CONCLUSIONS: The sensitivity of CAD at a high specificity was comparable to that of human readers. These results show potential for CAD to be used as an independent reader in breast cancer screening. KEY POINTS : ďż˝ Computer-aided detection (CAD) systems are used to detect malignant masses in mammograms ďż˝ Current CAD systems operate at low specificity to avoid perceptual oversight ďż˝ A CAD system has been developed that operates at high specificity ďż˝ The performance of the CAD system is approaching that of trained radiologists ďż˝ CAD has the potential to be an independent reader in screening
    corecore