255 research outputs found
Preflare magnetic and velocity fields
A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flare
Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas
The evolution of quasi-isentropic magnetohydrodynamic waves of small but
finite amplitude in an optically thin plasma is analyzed. The plasma is assumed
to be initially homogeneous, in thermal equilibrium and with a straight and
homogeneous magnetic field frozen in. Depending on the particular form of the
heating/cooling function, the plasma may act as a dissipative or active medium
for magnetoacoustic waves, while Alfven waves are not directly affected. An
evolutionary equation for fast and slow magnetoacoustic waves in the single
wave limit, has been derived and solved, allowing us to analyse the wave
modification by competition of weakly nonlinear and quasi-isentropic effects.
It was shown that the sign of the quasi-isentropic term determines the scenario
of the evolution, either dissipative or active. In the dissipative case, when
the plasma is first order isentropically stable the magnetoacoustic waves are
damped and the time for shock wave formation is delayed. However, in the active
case when the plasma is isentropically overstable, the wave amplitude grows,
the strength of the shock increases and the breaking time decreases. The
magnitude of the above effects depends upon the angle between the wave vector
and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar
abundances either in the interstellar medium or in the solar atmosphere, as
well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature
where the plasma is isentropically unstable and the corresponding time and
length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200
Structure and Dynamics of the Sun's Open Magnetic Field
The solar magnetic field is the primary agent that drives solar activity and
couples the Sun to the Heliosphere. Although the details of this coupling
depend on the quantitative properties of the field, many important aspects of
the corona - solar wind connection can be understood by considering only the
general topological properties of those regions on the Sun where the field
extends from the photosphere out to interplanetary space, the so-called open
field regions that are usually observed as coronal holes. From the simple
assumptions that underlie the standard quasi-steady corona-wind theoretical
models, and that are likely to hold for the Sun, as well, we derive two
conjectures on the possible structure and dynamics of coronal holes: (1)
Coronal holes are unique in that every unipolar region on the photosphere can
contain at most one coronal hole. (2) Coronal holes of nested polarity regions
must themselves be nested. Magnetic reconnection plays the central role in
enforcing these constraints on the field topology. From these conjectures we
derive additional properties for the topology of open field regions, and
propose several observational predictions for both the slowly varying and
transient corona/solar wind.Comment: 26 pages, 6 figure
Dynamics of solar coronal loops II. Catastrophic cooling and high-speed downflows
This work addresses the problem of plasma condensation and ``catastrophic
cooling'' in solar coronal loops. We have carried out numerical calculations of
coronal loops and find several classes of time-dependent solutions (static,
periodic, irregular), depending on the spatial distribution of a temporally
constant energy deposition in the loop. Dynamic loops exhibit recurrent plasma
condensations, accompanied by high-speed downflows and transient brightenings
of transition region lines, in good agreement with features observed with
TRACE. Furthermore, these results also offer an explanation for the recent EIT
observations of De Groof et al. (2004) of moving bright blobs in large coronal
loops. In contrast to earlier models, we suggest that the process of
catastrophic cooling is not initiated by a drastic decrease of the total loop
heating but rather results from a loss of equilibrium at the loop apex as a
natural consequence of heating concentrated at the footpoints of the loop, but
constant in time.Comment: 13 pages, 15 figure
Comprehensive analysis of the chromatin landscape in Drosophila melanogaster.
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function
On Solving the Coronal Heating Problem
This article assesses the current state of understanding of coronal heating,
outlines the key elements of a comprehensive strategy for solving the problem,
and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
- …