765 research outputs found

    Numerical simulation of mesoscale precipitation

    Get PDF
    The numerical simulation of mesoscale precipitation as well as the development of software and appropriate computer techniques are investigated. The development of a mesoscale model and the means to incorporate meteorological data into the model are examined

    Initialization of a mesoscale model for April 10, 1979, using alternative data sources

    Get PDF
    A 35 km grid limited area mesoscale model was initialized with high density SESAME radiosonde data and high density TIROS-N satellite temperature profiles for April 10, 1979. These data sources were used individually and with low level wind fields constructed from surface wind observations. The primary objective was to examine the use of satellite temperature data for initializing a mesoscale model by comparing the forecast results with similar experiments employing radiosonde data. The impact of observed low level winds on the model forecasts was also investigated with experiments varying the method of insertion. All forecasts were compared with each other and with mesoscale observations for precipitation, mass and wind structure. Several forecasts produced convective precipitation systems with characteristics satisfying criteria for a mesoscale convective complex. High density satellite temperature data and balanced winds can be used in a mesoscale model to produce forecasts which verify favorably with observations

    The finiteness of the four dimensional antisymmetric tensor field model in a curved background

    Full text link
    A renormalizable rigid supersymmetry for the four dimensional antisymmetric tensor field model in a curved space-time background is constructed. A closed algebra between the BRS and the supersymmetry operators is only realizable if the vector parameter of the supersymmetry is a covariantly constant vector field. This also guarantees that the corresponding transformations lead to a genuine symmetry of the model. The proof of the ultraviolet finiteness to all orders of perturbation theory is performed in a pure algebraic manner by using the rigid supersymmetry.Comment: 23 page

    String Fields and the Standard Model

    Get PDF
    The Cremmer-Scherk mechanism is generalised in a non-Abelian context. In the presence of the Higgs scalars of the standard model it is argued that fields arising from the low energy effective string action may contribute to the mass generation of the observed vector bosons that mediate the electroweak interactions and that future analyses of experimental data should consider the possibility of string induced radiative corrections to the Weinberg angle coming from physics beyond the standard model.Comment: 4 pages, LATEX, no figure

    Imaging FlowCytobot modified for high throughput by in-line acoustic focusing of sample particles

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography: Methods 15 (2017): 867–874, doi:10.1002/lom3.10205.Imaging FlowCytobot, a submersible instrument that measures optical properties and captures images of nano- and microplankton-sized particles, has proved useful in plankton studies, but its sampling rate is limited by the ability of hydrodynamic focusing to accurately position flowing sample particles. We show that IFCB's sampling rate can be increased at least several-fold by implementing in-line acoustic focusing upstream of the flow cell. Particles are forced to the center of flow by acoustic standing waves created by a piezo-electric transducer bonded to the sample capillary and driven at the appropriate frequency. With the particles of interest confined to the center of the sample flow, the increased size of the sample core that accompanies increased sample flow rate no longer degrades image and signal quality as it otherwise would. Temperature affects the optimum frequency (through its effect on the speed of sound in water), so a relationship between sample temperature and optimum frequency for acoustic focusing was determined and utilized to control the transducer. The modified instrument's performance was evaluated through analyses of artificial particles, phytoplankton cultures, and natural seawater samples and through deployments in coastal waters. The results show that large cells, especially dinoflagellates, are acoustically focused extremely effectively (which could enable, for example, > 10-fold increased sampling rate of harmful algal bloom species, if smaller cells are ignored), while for nearly all cell types typically monitored by IFCB, threefold faster data accumulation was achieved without any compromises. Further increases are possible with more sophisticated software and/or a faster camera.NSF Grant Numbers: OCE-1130140 , OCE-113113

    Strings in gravity with torsion

    Get PDF
    A theory of gravitation in 4D is presented with strings used in the material action in U4U_4 spacetime. It is shown that the string naturally gives rise to torsion. It is also shown that the equation of motion a string follows from the Bianchi identity, gives the identical result as the Noether conservation laws, and follows a geodesic only in the lowest order approximation. In addition, the conservation laws show that strings naturally have spin, which arises not from their motion but from their one dimensional structure.Comment: 16 page

    Vacuum polarisation induced coupling between Maxwell and Kalb-Ramond Fields

    Get PDF
    We present here a manifestly gauge invariant calculation of vacuum polarization to fermions in the presence of a constant Maxwell and a constant Kalb-Ramond field in four dimensions. The formalism is a generalisation of the one used by Schwinger in his famous paper on gauge invariance and vacuum polarization. We get an explicit expression for the vacuum polarization induced effective Lagrangian for a constant Maxwell field interacting with a constant Kalb-Ramond field. In the weak field limit we get the coupling between the Maxwell field and the Kalb-Ramond field to be (H~.F~)2(\tilde{H}.\tilde{F})^2, where H~μ=13!ϵμαβλHαβλ{\tilde H}_{\mu}= {1\over {3!}}\epsilon_{\mu\alpha\beta\lambda}H^{\alpha\beta\lambda} and F~\tilde F is the dual of FμνF_{\mu\nu}.Comment: 16 pages, Revte

    Topological Landau-Ginzburg Theory for Vortices in Superfluid 4^4He

    Full text link
    We propose a new Landau-Ginzburg theory for arbitrarily shaped vortex strings in superfluid 4^4He. The theory contains a topological term and directly describes vortex dynamics. We introduce gauge fields in order to remove singularities from the Landau-Ginzburg order parameter of the superfluid, so that two kinds of gauge symmetries appear, making the continuity equation and conservation of the total vorticity manifest. The topological term gives rise to the Berry phase term in the vortex mechanical actions.Comment: LATEX, 9 page
    • …
    corecore