299 research outputs found

    Beyond a Dichotomy of Perspectives: Understanding Religion on the Basis of Paul Natorp’s Logic of Boundary

    Get PDF
    Based on Paul Natorp’s (1854–1924) late post-Neo-Kantian β€œLogic of Boundary” (German: β€œGrenzlogik”) I will offer a methodically controlled, non-reductionist and equally anti-essentialist reconstruction of the notion of religion. The pre-eminent objective of this reconstructive work is to overcome the well-known epistemological as well as methodological problem of a dichotomy between inside and outside perspectives on the subject of religion. Differently put, the objective consists in an attempt to demonstrate that there actually is β€œreason in religion” that is intellectually accessible for academic knowledge production. Following Natorp’s splendid formulation I will argue that religion operates neither β€˜within’ nor β€˜beyond’ the β€˜boundary of humanity’ but exactly on [or β€˜in’] this boundary. More precisely, I will explicate that religious praxis (including its specific production of knowledge) from Natorp’s standpoint can be understood as the performative realization, and habitual embodiment of the (contextually concrete) boundary of humanity or human reason itself. Due to its principial self-referentiality this boundary carries the crucial sense of a first and last positive and, therefore, both in theoretical terms definitive and in practical terms eminently instructive notion of boundary with no outside. This paradoxically all-enclosing, positive boundary, while explicitly including life’s inevitable negativity but, nonetheless, able to ideally sublate it, is the reason why the practice of religion, as empirical evidence unmistakably documents, can provide an incommensurably fulfilling, significant and meaningful closure with regards to the innermost self-perception of its practitioners (concerning their self-determination or agency)

    Real-Time PyMOL Visualization for Rosetta and PyRosetta

    Get PDF
    Computational structure prediction and design of proteins and protein-protein complexes have long been inaccessible to those not directly involved in the field. A key missing component has been the ability to visualize the progress of calculations to better understand them. Rosetta is one simulation suite that would benefit from a robust real-time visualization solution. Several tools exist for the sole purpose of visualizing biomolecules; one of the most popular tools, PyMOL (SchrΓΆdinger), is a powerful, highly extensible, user friendly, and attractive package. Integrating Rosetta and PyMOL directly has many technical and logistical obstacles inhibiting usage. To circumvent these issues, we developed a novel solution based on transmitting biomolecular structure and energy information via UDP sockets. Rosetta and PyMOL run as separate processes, thereby avoiding many technical obstacles while visualizing information on-demand in real-time. When Rosetta detects changes in the structure of a protein, new coordinates are sent over a UDP network socket to a PyMOL instance running a UDP socket listener. PyMOL then interprets and displays the molecule. This implementation also allows remote execution of Rosetta. When combined with PyRosetta, this visualization solution provides an interactive environment for protein structure prediction and design

    Comparison of Synchrotron X-Ray Microanalysis With Electron and Proton Microscopy for Individual Particle Analysis

    Get PDF
    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE

    Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations

    Get PDF
    The serotonin (5-HT) transporter (SERT) plays an important role in the termination of 5-HT-mediated neurotransmission by transporting 5-HT away from the synaptic cleft and into the presynaptic neuron. In addition, SERT is the main target for antidepressant drugs, including the selective serotonin reuptake inhibitors (SSRIs). The three-dimensional (3D) structure of SERT has not yet been determined, and little is known about the molecular mechanisms of substrate binding and transport, though such information is very important for the development of new antidepressant drugs. In this study, a homology model of SERT was constructed based on the 3D structure of a prokaryotic homologous leucine transporter (LeuT) (PDB id: 2A65). Eleven tryptamine derivates (including 5-HT) and the SSRI (S)-citalopram were docked into the putative substrate binding site, and two possible binding modes of the ligands were found. To study the conformational effect that ligand binding may have on SERT, two SERT–5-HT and two SERT–(S)-citalopram complexes, as well as the SERT apo structure, were embedded in POPC lipid bilayers and comparative molecular dynamics (MD) simulations were performed. Our results show that 5-HT in the SERT–5-HTB complex induced larger conformational changes in the cytoplasmic parts of the transmembrane helices of SERT than any of the other ligands. Based on these results, we suggest that the formation and breakage of ionic interactions with amino acids in transmembrane helices 6 and 8 and intracellular loop 1 may be of importance for substrate translocation

    Clinical feasibility of (neo)adjuvant taxane-based chemotherapy in older patients: analysis of >4,500 patients from four German randomized breast cancer trials

    Get PDF
    Introduction Despite the fact that people older than 65 years of age have the highest incidence of developing breast cancer, these patients are excluded from clinical trials in most cases. Furthermore, most physicians tend towards therapy regimens without the use of dose-dense, highly active taxane-based treatments because of a lack of data regarding toxicities of these compounds in older patients. Methods Pooled side-effect data were analyzed from four prospective, randomized clinical trials in which patients of different age groups (60 years, between 60 and 64 years, and 64 years) with primary breast cancer received taxane-based chemotherapy. Results Dose delays, dose reductions, hospitalization, and therapy discontinuation increased with age. Hematologic toxicities and some nonhematologic toxicities were generally more common in older patients. Leucopenia increased from 55.3% in patients aged 60 years to 65.5% in patients aged 64 years (P<0.001), and neutropenia increased from 46.9% to 57.4% (P<0.001). There was no difference, however, in clinically more relevant febrile neutropenia between the different age groups. Thrombopenia shows a similar age-dependent increase, whereas there is no difference between the age groups concerning anemia. Hot flushes and elevated liver enzymes decreased with increasing age. Conclusions The present pooled analysis of a substantial cohort of older primary breast cancer patients demonstrates that taxane-containing (neo) adjuvant chemotherapy is feasible in older patients and that toxicity can be reduced by sequential therapy regimens

    Effects of the combination of camptothecin and doxorubicin or etoposide on rat glioma cells and camptothecin-resistant variants

    Get PDF
    From the rat C6 glioma cell line in culture, we selected camptothecin-resistant variants by growth in the presence of increasing amounts of this drug (C6CPT10, C6CPT50 and C6CPT100, growing respectively with 10, 50 and 100β€ˆng ml–1camptothecin). The degree of resistance to camptothecin ranged between 15-fold (C6CPT10) and 30-fold (C6CPT50and C6CPT100). The C6CPT10cell line presented a collateral sensitivity to etoposide (3.6-fold), while the C6CPT50 and C6CPT100 cell lines were cross-resistant to etoposide (1.8-fold) The resistant lines were characterised by a two-fold reduced content and catalytic activity of topoisomerase I, and C6CPT50 and C6CPT100 presented a significant increase in topoisomerase IIΞ± content and catalytic activity and a marked overexpression of P-glycoprotein. We explored the cytotoxicity of combinations of a topoisomerase I inhibitor (camptothecin) and a topoisomerase II inhibitor (doxorubicin or etoposide) at several molar ratios, allowing the evaluation of their synergistic or antagonistic effects on cell survival using the median effect principle. The simultaneous combination of camptothecin and doxorubicin or etoposide was additive or antagonistic in C6 cells, slightly synergistic in the C6CPT10 line and never more than additive in the C6CPT50 and C6CPT100 cell lines. The sequential combination of doxorubicin and camptothecin gave additivity in the order camptothecin β†’ doxorubicin and antagonism in the order doxorubicin β†’ camptothecin. Clinical protocols combining a topoisomerase I and a topoisomerase II inhibitor should be considered with caution because antagonistic effects have been observed with combinations of camptothecin and doxorubicin.Β© 2001 Cancer Research Campaign http://www.bjcancer.co

    Protein Design Using Continuous Rotamers

    Get PDF
    Optimizing amino acid conformation and identity is a central problem in computational protein design. Protein design algorithms must allow realistic protein flexibility to occur during this optimization, or they may fail to find the best sequence with the lowest energy. Most design algorithms implement side-chain flexibility by allowing the side chains to move between a small set of discrete, low-energy states, which we call rigid rotamers. In this work we show that allowing continuous side-chain flexibility (which we call continuous rotamers) greatly improves protein flexibility modeling. We present a large-scale study that compares the sequences and best energy conformations in 69 protein-core redesigns using a rigid-rotamer model versus a continuous-rotamer model. We show that in nearly all of our redesigns the sequence found by the continuous-rotamer model is different and has a lower energy than the one found by the rigid-rotamer model. Moreover, the sequences found by the continuous-rotamer model are more similar to the native sequences. We then show that the seemingly easy solution of sampling more rigid rotamers within the continuous region is not a practical alternative to a continuous-rotamer model: at computationally feasible resolutions, using more rigid rotamers was never better than a continuous-rotamer model and almost always resulted in higher energies. Finally, we present a new protein design algorithm based on the dead-end elimination (DEE) algorithm, which we call iMinDEE, that makes the use of continuous rotamers feasible in larger systems. iMinDEE guarantees finding the optimal answer while pruning the search space with close to the same efficiency of DEE. Availability: Software is available under the Lesser GNU Public License v3. Contact the authors for source code

    Anchored Design of Protein-Protein Interfaces

    Get PDF
    Few existing protein-protein interface design methods allow for extensive backbone rearrangements during the design process. There is also a dichotomy between redesign methods, which take advantage of the native interface, and de novo methods, which produce novel binders.Here, we propose a new method for designing novel protein reagents that combines advantages of redesign and de novo methods and allows for extensive backbone motion. This method requires a bound structure of a target and one of its natural binding partners. A key interaction in this interface, the anchor, is computationally grafted out of the partner and into a surface loop on the design scaffold. The design scaffold's surface is then redesigned with backbone flexibility to create a new binding partner for the target. Careful choice of a scaffold will bring experimentally desirable characteristics into the new complex. The use of an anchor both expedites the design process and ensures that binding proceeds against a known location on the target. The use of surface loops on the scaffold allows for flexible-backbone redesign to properly search conformational space.This protocol was implemented within the Rosetta3 software suite. To demonstrate and evaluate this protocol, we have developed a benchmarking set of structures from the PDB with loop-mediated interfaces. This protocol can recover the correct loop-mediated interface in 15 out of 16 tested structures, using only a single residue as an anchor
    • …
    corecore