1,033 research outputs found

    The electronic structure of amorphous silica: A numerical study

    Full text link
    We present a computational study of the electronic properties of amorphous SiO2. The ionic configurations used are the ones generated by an earlier molecular dynamics simulations in which the system was cooled with different cooling rates from the liquid state to a glass, thus giving access to glass-like configurations with different degrees of disorder [Phys. Rev. B 54, 15808 (1996)]. The electronic structure is described by a tight-binding Hamiltonian. We study the influence of the degree of disorder on the density of states, the localization properties, the optical absorption, the nature of defects within the mobility gap, and on the fluctuations of the Madelung potential, where the disorder manifests itself most prominently. The experimentally observed mismatch between a photoconductivity threshold of 9 eV and the onset of the optical absorption around 7 eV is interpreted by the picture of eigenstates localized by potential energy fluctuations in a mobility gap of approximately 9 eV and a density of states that exhibits valence and conduction band tails which are, even in the absence of defects, deeply located within the former band gap.Comment: 21 pages of Latex, 5 eps figure

    Three-Dimensional Quantum Percolation Studied by Level Statistics

    Full text link
    Three-dimensional quantum percolation problems are studied by analyzing energy level statistics of electrons on maximally connected percolating clusters. The quantum percolation threshold \pq, which is larger than the classical percolation threshold \pc, becomes smaller when magnetic fields are applied, i.e., \pq(B=0)>\pq(B\ne 0)>\pc. The critical exponents are found to be consistent with the recently obtained values of the Anderson model, supporting the conjecture that the quantum percolation is classified onto the same universality classes of the Anderson transition. Novel critical level statistics at the percolation threshold is also reported.Comment: to appear in the May issue of J. Phys. Soc. Jp

    Equivalent Fixed-Points in the Effective Average Action Formalism

    Full text link
    Starting from a modified version of Polchinski's equation, Morris' fixed-point equation for the effective average action is derived. Since an expression for the line of equivalent fixed-points associated with every critical fixed-point is known in the former case, this link allows us to find, for the first time, the analogous expression in the latter case.Comment: 30 pages; v2: 29 pages - major improvements to section 3; v3: published in J. Phys. A - minor change

    Towards classical geometrodynamics from Group Field Theory hydrodynamics

    Full text link
    We take the first steps towards identifying the hydrodynamics of group field theories (GFTs) and relating this hydrodynamic regime to classical geometrodynamics of continuum space. We apply to GFT mean field theory techniques borrowed from the theory of Bose condensates, alongside standard GFT and spin foam techniques. The mean field configuration we study is, in turn, obtained from loop quantum gravity coherent states. We work in the context of 2d and 3d GFT models, in euclidean signature, both ordinary and colored, as examples of a procedure that has a more general validity. We also extract the effective dynamics of the system around the mean field configurations, and discuss the role of GFT symmetries in going from microscopic to effective dynamics. In the process, we obtain additional insights on the GFT formalism itself.Comment: revtex4, 32 pages. Contribution submitted to the focus issue of the New Journal of Physics on "Classical and Quantum Analogues for Gravitational Phenomena and Related Effects", R. Schuetzhold, U. Leonhardt and C. Maia, Eds; v2: typos corrected, references updated, to match the published versio

    Mapping Children's Discussions of Evidence in Science to Assess Collaboration and Argumentation

    Get PDF
    The research reported in this paper concerns the development of children's skills of interpreting and evaluating evidence in science. Previous studies have shown that school teaching often places limited emphasis on the development of these skills, which are necessary for children to engage in scientific debate and decision-making. The research, undertaken in the UK, involved four collaborative decision-making activities to stimulate group discussion, each was carried out with five groups of four children (10-11 years old). The research shows how the children evaluated evidence for possible choices and judged whether their evidence was sufficient to support a particular conclusion or the rejection of alternative conclusions. A mapping technique was developed to analyse the discussions and identify different "levels" of argumentation. The authors conclude that suitable collaborative activities that focus on the discussion of evidence can be developed to exercise children's ability to argue effectively in making decisions

    Properties of the Volume Operator in Loop Quantum Gravity I: Results

    Full text link
    We analyze the spectral properties of the volume operator of Ashtekar and Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the classical volume expression for regions in three dimensional Riemannian space. Our analysis considers for the first time generic graph vertices of valence greater than four. Here we find that the geometry of the underlying vertex characterizes the spectral properties of the volume operator, in particular the presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is found to depend on the vertex embedding. We compute the set of all non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of valence 5--7, and argue that these sets can be used to label spatial diffeomorphism invariant states. We observe how gauge invariance connects vertex geometry and representation properties of the underlying gauge group in a natural way. Analytical results on the spectrum on 4-valent vertices are included, for which the presence of a volume gap is proved. This paper presents our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348 for important remarks regarding the sigma configurations. Subsequent computations have revealed some minor errors, which do not change the qualitative results but modify some of the numbers presented her

    Loop Quantum Cosmology: A Status Report

    Get PDF
    The goal of this article is to provide an overview of the current state of the art in loop quantum cosmology for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply loop quantum cosmology to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that, as described at the end of section I, each of these communities can read only the sections they are most interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical and Quantum Gravity. Typos corrected, clarifications and references adde
    • 

    corecore