4,055 research outputs found
Hardware-accelerated interactive data visualization for neuroscience in Python.
Large datasets are becoming more and more common in science, particularly in neuroscience where experimental techniques are rapidly evolving. Obtaining interpretable results from raw data can sometimes be done automatically; however, there are numerous situations where there is a need, at all processing stages, to visualize the data in an interactive way. This enables the scientist to gain intuition, discover unexpected patterns, and find guidance about subsequent analysis steps. Existing visualization tools mostly focus on static publication-quality figures and do not support interactive visualization of large datasets. While working on Python software for visualization of neurophysiological data, we developed techniques to leverage the computational power of modern graphics cards for high-performance interactive data visualization. We were able to achieve very high performance despite the interpreted and dynamic nature of Python, by using state-of-the-art, fast libraries such as NumPy, PyOpenGL, and PyTables. We present applications of these methods to visualization of neurophysiological data. We believe our tools will be useful in a broad range of domains, in neuroscience and beyond, where there is an increasing need for scalable and fast interactive visualization
Synaptic scaling in sleep
Sleep appears to be a universal phenomenon in the animal kingdom (1) and lack of sleep leads to severe cognitive disruption (2). Yet, the biological function of sleep is unknown. On pages 507 and 511 of this issue, de Vivo et al. (3) and Diering et al. (4), respectively, provide a peek into the nightlife of synapses, the neural connections in the nervous system. The studies reveal substantial alterations in the structure and molecular machinery of synapses during sleep
Challenges and opportunities for large-scale electrophysiology with Neuropixels probes
Electrophysiological methods are the gold standard in neuroscience because they reveal the activity of individual neurons at high temporal resolution and in arbitrary brain locations. Microelectrode arrays based on complementary metal-oxide semiconductor (CMOS) technology, such as Neuropixels probes, look set to transform these methods. Neuropixels probes provide ∼1000 recording sites on an extremely narrow shank, with on-board amplification, digitization, and multiplexing. They deliver low-noise recordings from hundreds of neurons, providing a step change in the type of data available to neuroscientists. Here we discuss the opportunities afforded by these probes for large-scale electrophysiology, the challenges associated with data processing and anatomical localization, and avenues for further improvements of the technology
Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex
Cortical computation arises from the interaction of multiple neuronal types, including pyramidal (Pyr) cells and interneurons expressing Sst, Vip, or Pvalb. To study the circuit underlying such interactions, we imaged these four types of cells in mouse primary visual cortex (V1). Our recordings in darkness were consistent with a "disinhibitory" model in which locomotion activates Vip cells, thus inhibiting Sst cells and disinhibiting Pyr cells. However, the disinhibitory model failed when visual stimuli were present: locomotion increased Sst cell responses to large stimuli and Vip cell responses to small stimuli. A recurrent network model successfully predicted each cell type's activity from the measured activity of other types. Capturing the effects of locomotion, however, required allowing it to increase feedforward synaptic weights and modulate recurrent weights. This network model summarizes interneuron interactions and suggests that locomotion may alter cortical computation by changing effective synaptic connectivity
Suite2p: beyond 10,000 neurons with standard two-photon microscopy
Two-photon microscopy of calcium-dependent sensors has enabled unprecedented recordings from vast populations of neurons. While the sensors and microscopes have matured over several generations of development, computational methods to process the resulting movies remain inefficient and can give results that are hard to interpret. Here we introduce Suite2p: a fast, accurate and complete pipeline that registers raw movies, detects active cells, extracts their calcium traces and infers their spike times. Suite2p runs on standard workstations, operates faster than real time, and recovers ~2 times more cells than the previous state-of-the-art method. Its low computational load allows routine detection of ~10,000 cells simultaneously with standard two-photon resonant-scanning microscopes. Recordings at this scale promise to reveal the fine structure of activity in large populations of neurons or large populations of subcellular structures such as synaptic boutons
Spike sorting for large, dense electrode arrays
Developments in microfabrication technology have enabled the production of neural electrode arrays with hundreds of closely spaced recording sites, and electrodes with thousands of sites are under development. These probes in principle allow the simultaneous recording of very large numbers of neurons. However, use of this technology requires the development of techniques for decoding the spike times of the recorded neurons from the raw data captured from the probes. Here we present a set of tools to solve this problem, implemented in a suite of practical, user-friendly, open-source software. We validate these methods on data from the cortex, hippocampus and thalamus of rat, mouse, macaque and marmoset, demonstrating error rates as low as 5%
Subcortical Source and Modulation of the Narrowband Gamma Oscillation in Mouse Visual Cortex
Primary visual cortex exhibits two types of gamma rhythm: broadband activity in the 30-90 Hz range and a narrowband oscillation seen in mice at frequencies close to 60 Hz. We investigated the sources of the narrowband gamma oscillation, the factors modulating its strength, and its relationship to broadband gamma activity. Narrowband and broadband gamma power were uncorrelated. Increasing visual contrast had opposite effects on the two rhythms: it increased broadband activity, but suppressed the narrowband oscillation. The narrowband oscillation was strongest in layer 4 and was mediated primarily by excitatory currents entrained by the synchronous, rhythmic firing of neurons in the lateral geniculate nucleus (LGN). The power and peak frequency of the narrowband gamma oscillation increased with light intensity. Silencing the cortex optogenetically did not abolish the narrowband oscillation in either LGN firing or cortical excitatory currents, suggesting that this oscillation reflects unidirectional flow of signals from thalamus to cortex
Aberrant Cortical Activity In Multiple GCaMP6-Expressing Transgenic Mouse Lines
Transgenic mouse lines are invaluable tools for neuroscience but as with any technique, care must be taken to ensure that the tool itself does not unduly affect the system under study. Here we report aberrant electrical activity, similar to interictal spikes, and accompanying fluorescence events in some genotypes of transgenic mice expressing GCaMP6 genetically-encoded calcium sensors. These epileptiform events have been observed particularly, but not exclusively, in mice with Emx1-Cre and Ai93 transgenes, across multiple laboratories. The events occur at >0.1 Hz, are very large in amplitude (>1.0 mV local field potentials, >10% df/f widefield imaging signals), and typically cover large regions of cortex. Many properties of neuronal responses and behavior seem normal despite these events, though rare subjects exhibit overt generalized seizures. The underlying mechanisms of this phenomenon remain unclear, but we speculate about possible causes on the basis of diverse observations. We encourage researchers to be aware of these activity patterns while interpreting neuronal recordings from affected mouse lines and when considering which lines to study
Translational outcomes in a full gene deletion of ubiquitin protein ligase E3A rat model of Angelman syndrome.
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by developmental delay, impaired communication, motor deficits and ataxia, intellectual disabilities, microcephaly, and seizures. The genetic cause of AS is the loss of expression of UBE3A (ubiquitin protein ligase E6-AP) in the brain, typically due to a deletion of the maternal 15q11-q13 region. Previous studies have been performed using a mouse model with a deletion of a single exon of Ube3a. Since three splice variants of Ube3a exist, this has led to a lack of consistent reports and the theory that perhaps not all mouse studies were assessing the effects of an absence of all functional UBE3A. Herein, we report the generation and functional characterization of a novel model of Angelman syndrome by deleting the entire Ube3a gene in the rat. We validated that this resulted in the first comprehensive gene deletion rodent model. Ultrasonic vocalizations from newborn Ube3am-/p+ were reduced in the maternal inherited deletion group with no observable change in the Ube3am+/p- paternal transmission cohort. We also discovered Ube3am-/p+ exhibited delayed reflex development, motor deficits in rearing and fine motor skills, aberrant social communication, and impaired touchscreen learning and memory in young adults. These behavioral deficits were large in effect size and easily apparent in the larger rodent species. Low social communication was detected using a playback task that is unique to rats. Structural imaging illustrated decreased brain volume in Ube3am-/p+ and a variety of intriguing neuroanatomical phenotypes while Ube3am+/p- did not exhibit altered neuroanatomy. Our report identifies, for the first time, unique AS relevant functional phenotypes and anatomical markers as preclinical outcomes to test various strategies for gene and molecular therapies in AS
Hyporheic Zone Microbiome Assembly Is Linked to Dynamic Water Mixing Patterns in Snowmelt-Dominated Headwater Catchments
Terrestrial and aquatic elemental cycles are tightly linked in upland fluvial networks. Biotic and abiotic mineral weathering, microbially mediated degradation of organic matter, and anthropogenic influences all result in the movement of solutes (e.g., carbon, metals, and nutrients) through these catchments, with implications for downstream water quality. Within the river channel, the region of hyporheic mixing represents a hot spot of microbial activity, exerting significant control over solute cycling. To investigate how snowmelt-driven seasonal changes in river discharge affect microbial community assembly and carbon biogeochemistry, depth-resolved pore water samples were recovered from multiple locations around a representative meander on the East River near Crested Butte, CO, USA. Vertical temperature sensor arrays were also installed in the streambed to enable seepage flux estimates. Snowmelt-driven high river discharge led to an expanding zone of vertical hyporheic mixing and introduced dissolved oxygen into the streambed that stimulated aerobic microbial respiration. These physicochemical processes contributed to microbial communities undergoing homogenizing selection, in contrast to other ecosystems where lower permeability may limit the extent of mixing. Conversely, lower river discharge conditions led to a greater influence of upwelling groundwater within the streambed and a decrease in microbial respiration rates. Associated with these processes, microbial communities throughout the streambed exhibited increasing dissimilarity between each other, suggesting that the earlier onset of snowmelt and longer periods of base flow may lead to changes in the composition (and associated function) of streambed microbiomes, with consequent implications for the processing and export of solutes from upland catchments
- …
