50 research outputs found

    In vitro metabolism of beclomethasone dipropionate, budesonide, ciclesonide, and fluticasone propionate in human lung precision-cut tissue slices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The therapeutic effect of inhaled corticosteroids (ICS) may be affected by the metabolism of the drug in the target organ. We investigated the <it>in vitro </it>metabolism of beclomethasone dipropionate (BDP), budesonide (BUD), ciclesonide (CIC), and fluticasone propionate (FP) in human lung precision-cut tissue slices. CIC, a new generation ICS, is hydrolyzed by esterases in the upper and lower airways to its pharmacologically active metabolite desisobutyryl-ciclesonide (des-CIC).</p> <p>Methods</p> <p>Lung tissue slices were incubated with BDP, BUD, CIC, and FP (initial target concentration of 25 μM) for 2, 6, and 24 h. Cellular viability was assessed using adenosine 5'-triphosphate content and protein synthesis in lung slices. Metabolites and remaining parent compounds in the tissue samples were analyzed by HPLC with UV detection.</p> <p>Results</p> <p>BDP was hydrolyzed to the pharmacologically active metabolite beclomethasone-17-monopropionate (BMP) and, predominantly, to inactive beclomethasone (BOH). CIC was hydrolyzed initially to des-CIC with a slower rate compared to BDP. A distinctly smaller amount (approximately 10-fold less) of fatty acid esters were formed by BMP (and/or BOH) than by BUD or des-CIC. The highest relative amounts of fatty acid esters were detected for BUD. For FP, no metabolites were detected at any time point. The amount of drug-related material in lung tissue (based on initial concentrations) at 24 h was highest for CIC, followed by BUD and FP; the smallest amount was detected for BDP.</p> <p>Conclusion</p> <p>The <it>in vitro </it>metabolic pathways of the tested ICS in human lung tissue were differing. While FP was metabolically stable, the majority of BDP was converted to inactive polar metabolites. The formation of fatty acid conjugates was confirmed for BMP (and/or BOH), BUD, and des-CIC.</p

    Inhaled ciclesonide versus inhaled budesonide or inhaled beclomethasone or inhaled fluticasone for chronic asthma in adults: a systematic review

    Get PDF
    BACKGROUND: Ciclesonide is a new inhaled corticosteroids licensed for the prophylactic treatment of persistent asthma in adults. Currently beclomethasone dipropionate, budesonide and fluticasone propionate are the most commonly prescribed inhaled corticosteroids for the treatment of asthma but there has been no systematic review comparing the effectiveness and safety ciclesonide to these agents. We therefore aimed to systematically review published randomised controlled trials of the effectiveness and safety of ciclesonide compared to alternative inhaled corticosteroids in people with asthma. METHODS: We performed literature searches on MEDLINE, EMBASE, PUBMED, the COCHRANE LIBRARY and various Internet evidence sources for randomised controlled trials or systematic reviews comparing ciclesonide to beclomethasone or budesonide or fluticasone in adult humans with persistent asthma. Data was extracted by one reviewer. RESULTS: Five studies met the inclusion criteria. Methodological quality was variable. There were no trials comparing ciclesonide to beclomethasone. There was no significant difference between ciclesonide and budesonide or fluticasone on the following outcomes: lung function, symptoms, quality of life, airway responsiveness to a provoking agent or inflammatory markers. However, the trials were very small in size, increasing the possibility of a type II error. One trial demonstrated that the combined deposition of ciclesonide (and its active metabolite) in the oropharynx was 47% of that of budesonide while another trial demonstrated that the combined deposition of ciclesonide (and its active metabolite) in the oropharynx was 53% of that of fluticasone. One trial demonstrated less suppression of cortisol in overnight urine collection after ciclesonide compared to fluticasone (geometric mean fold difference = 1.5, P < 0.05) but no significant difference in plasma cortisol response. CONCLUSION: There is very little evidence comparing CIC to other ICS, restricted to very small, phase II studies of low power. These demonstrate CIC has similar effectiveness and efficacy to FP and BUD (though equivalence is not certain) and findings regarding oral deposition and HPA suppression are inconclusive. There is no direct comparative evidence that CIC causes fewer side effects since none of the studies reported patient-based outcomes

    Tolerance and rebound with zafirlukast in patients with persistent asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potential for tolerance to develop to zafirlukast, a cysteinyl leukotriene (CysLT) receptor antagonist (LRA) in persistent asthma, has not been specifically examined.</p> <p>Objective</p> <p>To look for any evidence of tolerance and potential for short-term clinical worsening on LRA withdrawal. Outcome measures included changes in; airway hyperresponsiveness to inhaled methacholine (PD<sub>20</sub>FEV<sub>1</sub>), daily symptoms and peak expiratory flows (PEF), sputum and blood cell profiles, sputum CysLT and prostaglandin (PG)E<sub>2 </sub>and exhaled nitric oxide (eNO) levels.</p> <p>Methods</p> <p>A double blind, placebo-controlled study of zafirlukast, 20 mg twice daily over 12 weeks in 21 asthmatics taking β<sub>2</sub>-agonists only (Group I), and 24 subjects treated with ICS (Group II).</p> <p>Results</p> <p>In Group I, zafirlukast significantly improved morning PEF and FEV<sub>1</sub>compared to placebo (p < 0.01), and reduced morning waking with asthma from baseline after two weeks (p < 0.05). Similarly in Group II, FEV<sub>1 </sub>improved compared to placebo (p < 0.05), and there were early within-treatment group improvements in morning PEF, β<sub>2</sub>-agonist use and asthma severity scores (p < 0.05). However, most improvements with zafirlukast in Group I and to a lesser extent in Group II deteriorated toward baseline values over 12 weeks. In both groups, one week following zafirlukast withdrawal there were significant deteriorations in morning and evening PEFs and FEV<sub>1 </sub>compared with placebo (p ≤ 0.05) and increased nocturnal awakenings in Group II (p < 0.05). There were no changes in PD<sub>20</sub>FEV<sub>1</sub>, sputum CysLT concentrations or exhaled nitric oxide (eNO) levels. However, blood neutrophils significantly increased in both groups following zafirlukast withdrawal compared to placebo (p = 0.007).</p> <p>Conclusion</p> <p>Tolerance appears to develop to zafirlukast and there is rebound clinical deterioration on drug withdrawal, accompanied by a blood neutrophilia.</p

    Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease:an Interasma (Global Asthma Association - GAA) and World Allergy Organization (WAO) document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA) and Global Allergy and Asthma European Network (GA2LEN)

    Get PDF
    Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD) has led INTERASMA (Global Asthma Association) and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA2LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm) are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules) have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled formulations must reflect the physician’s considerations of disease features, phenotype, and response to previous therapy. This article is being co-published in Asthma Research and Practice and the World Allergy Organization Journal

    Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation

    Get PDF
    Rationale Asthma phenotyping requires novel biomarker discovery. Objectives To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). Methods An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. Results In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. Conclusions The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA

    GERDA - GERNOD: Effekte der Disease Management Programme Asthma bronchiale und COPD

    No full text

    Prescribing new therapies for the management of asthma

    No full text

    DMP COPD: Profitieren Patienten mit einer schwerergradigen Erkrankung von einer Teilnahme am DMP?

    No full text

    In patients with chronic bronchitis a four week trial with inhaled steroids does not attenuate airway inflammation

    Get PDF
    AbstractSystemic corticosteroids have been recommended as a therapeutic option in patients with moderate to severe COPD. In an early stage of the disease, i.e. chronic bronchitis with mild or no airflow obstruction, a trial with inhaled steroids could reveal potential benefits, particularly in terms of a modulation of airway inflammation.We therefore investigated the effect of inhaled fluticasone (1000 μ g day−1) on markers of airway inflammation in 19 patients with chronic bronchitis (mean±SEM FEV1, 83·4±3·0% predicted; FEV1/VC, 67·5±2·4%) in a double-blind, cross-over, placebo-controlled manner. Visits were performed before and after two 4-week treatment periods, separated by a 4-week washout period. Lung function, the concentration of exhaled nitric oxide, differential cell counts in induced sputum and the number of cells positive for iNOS, as well as the levels of LDH, ECP, neutrophil elastase and IL-8 in sputum supernatants were determined.Although the total cell number decreased significantly after fluticasone (geometric mean 12·3 vs. 7·7×106/ml;P<0·05) it was not significantly different from the change observed after placebo (14·2 vs. 10·6×106/ml; n.s.). None of the other parameters showed statistically significant changes after fluticasone or placebo and the results did not depend on the presence of airway hyperresponsiveness.We conclude that in patients with chronic bronchitis short-term treatment with inhaled corticosterids did not improve lung function or inflammatory parameters to an extent which was statistically significant as compared to spontaneous variability
    corecore