1,338 research outputs found

    Prokaryotic expression, purification and immunogenicity analysis of CpsD protein from Streptococcus iniae

    Get PDF
    Streptococcus iniae is a major cause of serious bacterial infections in both fish and human beings. Capsular polysaccharide (CPS) of S. iniae is vital to evade phagocytic clearance of the host and serves as an important protective antigen of S. iniae infection in aquatic animals. The CpsD gene was determined to be highly conservative in capsule polysaccharide operon. Prokaryotic expression of the CpsD gene of a clinical isolate of S. iniae from channel catfish and immunogenic examination of the recombinant protein were first described in this essay. The recombinant protein was expressed in the form of inclusion bodies (IBs). Induction conditions in Escherichia coli were optimized with 0.6mM Isopropyl β-D-1-Thiogalactopyranoside at 37°C for 5h after the culture mid-log phase in Luria Bertani (LB) medium. The recombinant protein CpsD was thus expressed and purified by immobilized metal affinity chromatography (IMAC), yielding approximate 582.47 mg the protein per liter culture. Western blot analysis showed that the purified CpsD had reactogenicity. It will possibly reveal more details of capsule synthesis and capsule regulation during various stages of the S. iniae infectious process

    Gene transcription analysis during interaction between potato and Ralstonia solanacearum

    Get PDF
    Bacterial wilt (BW) caused by Ralstonia solanacearum (Rs) is an important quarantine disease that spreads worldwide and infects hundreds of plant species. The BW defense response of potato is a complicated continuous process, which involves transcription of a battery of genes. The molecular mechanisms of potato-Rs interactions are poorly understood. In this study, we combined suppression subtractive hybridization and macroarray hybridization to identify genes that are differentially expressed during the incompatible interaction between Rs and potato. In total, 302 differentially expressed genes were identified and classified into 12 groups according to their putative biological functions. Of 302 genes, 81 were considered as Rs resistance-related genes based on the homology to genes of known function, and they have putative roles in pathogen recognition, signal transduction, transcription factor functioning, hypersensitive response, systemic acquired resistance, and cell rescue and protection. Additionally, 50 out of 302 genes had no match or low similarity in the NCBI databases, and they may represent novel genes. Of seven interesting genes analyzed via RNA gel blot and semi-quantitative RT-PCR, six were induced, one was suppressed, and all had different transcription patterns. The results demonstrate that the response of potato against Rs is rapid and involves the induction of numerous various genes. The genes identified in this study add to our knowledge of potato resistance to Rs

    Domain Wall Resistance in Perpendicular (Ga,Mn)As: dependence on pinning

    Full text link
    We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.Comment: 9 pages, 3 figure

    Dynamic behavior investigations and disturbance rejection predictive control of solvent-based post-combustion CO2 capture process

    Get PDF
    Increasing demand for flexible operation has posed significant challenges to the control system design of solvent-based post-combustion CO2 capture (PCC) process: 1) the capture system itself has very slow dynamics; 2) in the case of wide range of operation, dynamic behavior of the PCC process will change significantly at different operating points; and 3) the frequent variation of upstream flue gas flowrate will bring in strong disturbances to the capture system. For these reasons, this paper provides a comprehensive study on the dynamic characteristics of the PCC process. The system dynamics under different CO2 capture rates, re-boiler temperatures, and flue gas flow rates are analyzed and compared through step-response tests. Based on the in-depth understanding of the system behavior, a disturbance rejection predictive controller (DRPC) is proposed for the PCC process. The predictive controller can track the desired CO2 capture rate quickly and smoothly in a wide operating range while tightly maintaining the re-boiler temperature around the optimal value. Active disturbance rejection approach is used in the predictive control design to improve the control property in the presence of dynamic variations or disturbances. The measured disturbances, such as the flue gas flow rate, is considered as an additional input in the predictive model development, so that accurate model prediction and timely control adjustment can be made once the disturbance is detected. For unmeasured disturbances, including model mismatches, plant behavior variations, etc., a disturbance observer is designed to estimate the value of disturbances. The estimated signal is then used as a compensation to the predictive control signal to remove the influence of disturbances. Simulations on a monoethanolamine (MEA) based PCC system developed on gCCS demonstrates the excellent effect of the proposed controller

    Reinforced coordinated control of coal-fired power plant retrofitted with solvent based CO2 capture using model predictive controls

    Get PDF
    Solvent-based post-combustion CO2 capture (PCC) provides a promising technology for the CO2 removal of coal-fired power plant (CFPP). However, there are strong interactions between the CFPP and the PCC system, which makes it challenging to attain a good control for the integrated plant. The PCC system requires extraction of large amounts of steam from the intermediate/low pressure steam turbine to provide heat for solvent regeneration, which will reduce power generation. Wide-range load variation of power plant will cause strong fluctuation of the flue gas flow and brings in a significant impact on the PCC system. To overcome these issues, this paper presents a reinforced coordinated control scheme for the integrated CFPP-PCC system based on the investigation of the overall plant dynamic behavior. Two model predictive controllers are developed for the CFPP and PCC plants respectively, in which the steam flow rate to re-boiler and the flue-gas flow rate are considered as feed-forward signals to link the two systems together. Three operating modes are considered for designing the coordinated control system, which are: (1) normal operating mode; (2) rapid power load change mode; and (3) strict carbon capture mode. The proposed coordinated controller can enhance the overall performance of the CFPP-PCC plant and achieve a flexible trade-off between power generation and CO2 reduction. Simulation results on a small-scale subcritical CFPP-PCC plant developed on gCCS demonstrates the effectiveness of the proposed controller

    Evolution Of Myrmecophytism In Western Malesian Macaranga (Euphorbiaceae)

    Get PDF
    Plants inhabited by ants (myrmecophytes) have evolved in a diversity of tropical plant lineages. Macaranga includes approximately 300 paleotropical tree species; in western Malesia there are 26 myrmecophytic species that vary in morphological specializations for ant association. The origin and diversification of myrmecophytism in Macaranga was investigated using phylogenetic analyses of morphological and nuclear ITS DNA characters and studies of character evolution. Despite low ITS variation, the combined analysis resulted in a well-supported hypothesis of relationships. Mapping myrmecophytism on all most parsimonious trees resulting from the combined analysis indicated that the trait evolved independently between two and four times and was lost between one and three times (five changes). This hypothesis was robust when tested against trees constrained to have three or fewer evolutionary transformations, although increased taxon sampling for the ITS analysis is required to confirm this. Mapping morphological traits on the phylogeny indicated that myrmecophytism was not homologous among lineages; each independent origin involved a suite of different specializations for ant-plant association. There was no evidence that myrmecophytic traits underwent sequential change through evolution; self-hollowing domatia evolved independently from ant-excavated domatia, and different food-body production types evolved in different lineages. The multiple origins of myrmecophytism in Macaranga were restricted to one small, exclusively western Malesian lineage of an otherwise large and nonmyrmecophytic genus. Although the evolution of aggregated food-body production and the formation of domatia coincided with the evolution of myrmecophytism in all cases, several morphological, ecological, and biogeographic factors appear to have facilitated and constrained this radiation of ant-plants

    Adiponectin Prevents Diabetic Premature Senescence of Endothelial Progenitor Cells and Promotes Endothelial Repair by Suppressing the p38 MAP Kinase/p16INK4A Signaling Pathway

    Get PDF
    OBJECTIVE - A reduced number of circulating endothelial progenitor cells (EPCs) are casually associated with the cardiovascular complication of diabetes. Adiponectin exerts multiple protective effects against cardiovascular disease, independent of its insulin-sensitizing activity. The objective of this study was to investigate whether adiponectin plays a role in modulating the bioavailability of circulating EPCs and endothelial repair. RESEARCH DESIGN AND METHODS - Adiponectin knockout mice were crossed with db+/- mice to produce db/db diabetic mice without adiponectin. Circulating number of EPCs were analyzed by flow cytometry. Reendothelialization was evaluated by staining with Evans blue after wire-induced carotid injury. RESULTS - In adiponectin knockout mice, the number of circulating EPCs decreased in an age-dependent manner compared with the wild-type controls, and this difference was reversed by the chronic infusion of recombinant adiponectin. In db/db diabetic mice, the lack of adiponectin aggravated the hyperglycemia-induced decrease in circulating EPCs and also diminished the stimulatory effects of the PPARγ agonist rosiglitazone on EPC production and reendothelialization. In EPCs isolated from both human peripheral blood and mouse bone marrow, treatment with adiponectin prevented high glucose-induced premature senescence. At the molecular level, adiponectin decreased high glucose-induced accumulation of intracellular reactive oxygen species and consequently suppressed activation of p38 MAP kinase (MAPK) and expression of the senescence marker p16INK4A. CONCLUSIONS - Adiponectin prevents EPC senescence by inhibiting the ROS/p38 MAPK/p16 INK4A signaling cascade. The protective effects of adiponectin against diabetes vascular complications are attributed in part to its ability to counteract hyperglycemia-mediated decrease in the number of circulating EPCs. © 2010 by the American Diabetes Association.published_or_final_versio
    corecore