1,883 research outputs found

    Spectroscopy of diffuse light in dust clouds. Scattered light and the solar neighbourhood radiation field

    Full text link
    The optical surface brightness of dark nebulae is mainly due to scattering of integrated starlight by classical dust grains. It contains information on the impinging interstellar radiation field, cloud structure, and grain scattering properties. We have obtained spectra of the scattered light from 3500 to 9000 Angstrom in two globules, the Thumbprint Nebula and DC303.8-14.2. We use observations of the scattered light to study the impinging integrated starlight spectrum as well as the scattered H-alpha and other line emissions from all over the sky. We search also for the presence of other than scattered light in the two globules. We obtained long-slit spectra encompassing the whole globule plus adjacent sky in a one-slit setting, thus enabling efficient elimination of airglow and other foreground sky components. We calculated synthetic integrated starlight spectra for the solar neighbourhood using HIPPARCOS-based stellar distributions and the spectral library of Pickles. Spectra are presented separately for the bright rims and dark cores of the globules. The continuum spectral energy distributions and absorption line spectra can be well modelled with the synthetic integrated starlight spectra. Emission lines of H-alpha + NII, H-beta, and SII are detected and are interpreted in terms of scattered light plus an in situ warm ionized medium component behind the globules. We detected an excess of emission over the wavelength range 5200-8000 Angstrom in DC303.8-14.2 but the nature of this emission remains open

    Coulomb blockade and Bloch oscillations in superconducting Ti nanowires

    Full text link
    Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2π2\pi, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state -- the Coulomb blockade. When exposed to RF radiation, the internal Bloch oscillations can be synchronized with the external RF drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS -- the QPS junction (QPSJ).Comment: 5 pages, 4 figure

    The Spectral Energy Distribution of Self-gravitating Interstellar Clouds I. Spheres

    Full text link
    We derive the spectral energy distribution (SED) of dusty, isothermal, self gravitating, stable and spherical clouds externally heated by the ambient interstellar radiation field. For a given radiation field and dust properties, the radiative transfer problem is determined by the pressure of the surrounding medium and the cloud mass expressed as a fraction of the maximum stable cloud mass above which the clouds become gravitational unstable. To solve the radiative transfer problem a ray-tracing code is used to accurately derive the light distribution inside the cloud. This code considers both non isotropic scattering on dust grains and multiple scattering events. The dust properties inside the clouds are assumed to be the same as in the diffuse interstellar medium in our galaxy. We analyse the effect of the pressure, the critical mass fraction, and the ISRF on the SED and present brightness profiles in the visible, the IR/FIR and the submm/mm regime with the focus on the scattered emission and the thermal emission from PAH-molecules and dust grains.Comment: accepted for publication in ApJS, May 2008, v176n1 issu

    Centimetre continuum emission from young stellar objects in Cederblad 110

    Get PDF
    The low-mass star formation region associated with the reflection nebula Cederblad 110 in the Chamaeleon I cloud was mapped with the Australian Telescope Compact Array (ATCA) at 6 and 3.5cm. Altogether 11 sources were detected, three of which are previously known low mass young stellar objects associated with the nebula: the illuminating star IRS2 (Class III, Einstein X-ray source CHX7), the brightest far-infrared source IRS4 (Class I), and the weak X-ray source CHX10a (Class III). The other young stellar objects in the region, including the Class 0 protostar candidate Cha-MMS1, were not detected. The radio spectral index of IRS4 (alpha = 1.7 +/- 0.3) is consistent with optically thick free-free emission arising from a dense ionized region, probably a jet-induced shock occurring in the circumstellar material. As the only Class I protostar with a 'thermal jet' IRS4 is the strongest candidate for the central source of the molecular outflow found previously in the region. The emission from IRS2 has a flat spectrum (alpha = 0.05 +/- 0.05) but shows no sign of polarization, and therefore its origin is likely to be optically thin free-free emission either from ionized wind or a collimated jet. The strongest source detected in this survey is a new compact object with a steep negative spectral index (-1.1) and a weak linear polarization (about 2 %), which probably represents a background radio galaxy.Comment: 7 pages, 2 Postscript figures. Accepted for publication in Astronomy & Astrophysic

    A model for particle formation and growth in the atmosphere with molecular resolution in size

    Get PDF
    International audienceThe formation and growth of atmospheric aerosol particles is considered using an exact discrete method with molecular resolution in size space. The method is immune to numerical diffusion problems that are a nuisance for typical simulation methods using a sectional representation for the particle size distribution. For condensational growth, a slight modification is proposed for the Fuchs-Sutugin expression, which improves the prediction of the growth rate of nano-sized particles by as much as a factor of two. The presented method is applied to particle formation in a Finnish Boreal forest and is shown to capture the essential features of the dynamics quite nicely. Furthermore, it is shown that the growth of the particles is roughly linear, which means that the amount of condensable vapour is constant (of the order 1013 1/m3)
    corecore