We derive the spectral energy distribution (SED) of dusty, isothermal, self
gravitating, stable and spherical clouds externally heated by the ambient
interstellar radiation field. For a given radiation field and dust properties,
the radiative transfer problem is determined by the pressure of the surrounding
medium and the cloud mass expressed as a fraction of the maximum stable cloud
mass above which the clouds become gravitational unstable.
To solve the radiative transfer problem a ray-tracing code is used to
accurately derive the light distribution inside the cloud. This code considers
both non isotropic scattering on dust grains and multiple scattering events.
The dust properties inside the clouds are assumed to be the same as in the
diffuse interstellar medium in our galaxy. We analyse the effect of the
pressure, the critical mass fraction, and the ISRF on the SED and present
brightness profiles in the visible, the IR/FIR and the submm/mm regime with the
focus on the scattered emission and the thermal emission from PAH-molecules and
dust grains.Comment: accepted for publication in ApJS, May 2008, v176n1 issu