197,856 research outputs found
Goal accomplishment tracking for automatic supervision of plan execution
It is common practice to break down plans into a series of goals or sub-goals in order to facilitate plan execution, thereby only burdening the individual agents responsible for their execution with small, easily achievable objectives at any one time, or providing a simple way of sharing these objectives amongst a group of these agents. Ensuring that plans are executed correctly is an essential part of any team management. To allow proper tracking of an agent's progress through a pre-planned set of goals, it is imperative to keep track of which of these goals have already been accomplished. This centralised approach is essential when the agent is part of a team of humans and/or robots, and goal accomplishment is not always being tracked at a low level. This paper presents a framework for an automated supervision system to keep track of changes in world states so as to chart progress through a pre-planned set of goals. An implementation of this framework on a mobile service robot is presented, and applied in an experiment which demonstrates its feasibility
Adaptive planning for distributed systems using goal accomplishment tracking
Goal accomplishment tracking is the process of monitoring the progress of a task or series of tasks towards completing a goal. Goal accomplishment tracking is used to monitor goal progress in a variety of domains, including workflow processing, teleoperation and industrial manufacturing. Practically, it involves the constant monitoring of task execution, analysis of this data to determine the task progress and notification of interested parties. This information is usually used in a passive way to observe goal progress. However, responding to this information may prevent goal failures. In addition, responding proactively in an opportunistic way can also lead to goals being completed faster. This paper proposes an architecture to support the adaptive planning of tasks for fault tolerance or opportunistic task execution based on goal accomplishment tracking. It argues that dramatically increased performance can be gained by monitoring task execution and altering plans dynamically
Talon cusp affecting primary dentition in two siblings: a case report
The term talon cusp refers to a rare developmental dental anomaly characterized by a cusp-like structure projecting from the cingulum area or cement-enamel junction. This condition can occur in the maxillary and mandibular arches of the primary and permanent dentitions. The purpose of this paper is to report on the presence of talon cusps in the primary dentition of two southern Chinese siblings. The 4 years and 2 months old girl had a talon cusp on her maxillary right primary central incisor, while her 2 years and 9 months old brother had bilateral talon cusps on the maxillary primary central incisors. The presence of this rare dental anomaly in two siblings has scarcely been reported in the literature and this may provide further evidence of a hereditary etiology.Article Link:
http://www.rjme.ro/RJME/resources/files/540113211213.pd
Breakdown of counterflow superfluidity in a disordered quantum Hall bilayer
We present a theory for the regime of coherent interlayer tunneling in a
disordered quantum Hall bilayer at total filling factor one, allowing for the
effect of static vortices. We find that the system consists of domains of
polarized superfluid phase. Injected currents introduce phase slips between the
polarized domains which are pinned by disorder. We present a model of saturated
tunneling domains that predicts a critical current for the breakdown of
coherent tunneling that is extensive in the system size. This theory is
supported by numerical results from a disordered phase model in two dimensions.
We also discuss how our picture might be used to interpret experiments in the
counterflow geometry and in two-terminal measurements.Comment: 7 pages, 3 figure
Accurate evaluation of homogenous and nonhomogeneous gas emissivities
Spectral transmittance and total band adsorptance of selected infrared bands of carbon dioxide and water vapor are calculated by using the line-by-line and quasi-random band models and these are compared with available experimental results to establish the validity of the quasi-random band model. Various wide-band model correlations are employed to calculate the total band absorptance and total emissivity of these two gases under homogeneous and nonhomogeneous conditions. These results are compared with available experimental results under identical conditions. From these comparisons, it is found that the quasi-random band model can provide quite accurate results and is quite suitable for most atmospheric applications
Transport phenomenology for a holon-spinon fluid
We propose that the normal-state transport in the cuprate superconductors can
be understood in terms of a two-fluid model of spinons and holons. In our
scenario, the resistivity is determined by the properties of the holons while
magnetotransport involves the recombination of holons and spinons to form
physical electrons. Our model implies that the Hall transport time is a measure
of the electron lifetime, which is shorter than the longitudinal transport
time. This agrees with our analysis of the normal-state data. We predict a
strong increase in linewidth with increasing temperature in photoemission. Our
model also suggests that the AC Hall effect is controlled by the transport
time.Comment: 4 pages, 1 postscript figure. Uses RevTeX, epsf, multico
Dyons in N=4 Supersymmetric Theories and Three-Pronged Strings
We construct and explore BPS states that preserve 1/4 of supersymmetry in N=4
Yang-Mills theories. Such states are also realized as three-pronged strings
ending on D3-branes. We correct the electric part of the BPS equation and
relate its solutions to the unbroken abelian gauge group generators. Generic
1/4-BPS solitons are not spherically symmetric, but consist of two or more
dyonic components held apart by a delicate balance between static
electromagnetic force and scalar Higgs force. The instability previously found
in three-pronged string configurations is due to excessive repulsion by one of
these static forces. We also present an alternate construction of these 1/4-BPS
states from quantum excitations around a magnetic monopole, and build up the
supermultiplet for arbitrary (quantized) electric charge. The degeneracy and
the highest spin of the supermultiplet increase linearly with a relative
electric charge. We conclude with comments.Comment: 33 pages, two figures, LaTex, a footnote added, the figure caption of
Fig.2 expanded, one more referenc
- ā¦