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Abstract

It is common practice to break down plans into
a series of goals or sub-goals in order to facili-
tate plan execution, thereby only burdening the
individual agents responsible for their execu-
tion with small, easily achievable objectives at
any one time, or providing a simple way of shar-
ing these objectives amongst a group of these
agents. FEnsuring that plans are executed cor-
rectly is an essential part of any team manage-
ment. To allow proper tracking of an agent’s
progress through a pre-planned set of goals, it
is imperative to keep track of which of these
goals have already been accomplished. This
centralised approach is essential when the agent
is part of a team of humans and/or robots,
and goal accomplishment is not always being
tracked at a low level. This paper presents a
framework for an automated supervision sys-
tem to keep track of changes in world states so
as to chart progress through a pre-planned set
of goals. An implementation of this framework
on a mobile service robot is presented, and ap-
plied in an experiment which demonstrates its
feasibility.

1 Introduction

All artificial systems are designed with a purpose in
mind, whether accomplished by a single action, con-
tinuous process, or a series of subtasks. The principle
of divide-and-conquer may be generally applied to sub-
divide these tasks until they reach a more manageable
size. For example, in assembly lines-based manufactur-
ing, the complex process of assembling a product is split
into smaller steps. Scientific workflow processing aims to
complete complex tasks by splitting them up into sub-
tasks, utilising available distributed resources [Deelman
et al., 2004]. Software-based project management of-
ten splits the development process into smaller, more

manageable units of activity [Kerzner, 1995]. In these
examples, accomplishing a purpose is defined as success-
fully executing a series of sequential steps which alter
the state of the world successively toward an ultimate
goal.

In Automated Planning, a plan is represented as a
graph in which the nodes are goals (the individual steps)
and the actions are the links between them. In this
paradigm, goals are defined as desirable states of the
world [Ghallab et al., 2004]. Achieving a goal amounts
to choosing and then performing those actions from the
agent’s behaviours that are required to change the state
of the world from an undesirable state to the desirable
state specified by the goal. The plan is a tree of inter-
dependent goals, with each parent goal relying on the
fulfilment of all its child nodes. A task is accomplished
when the root node (the highest-level goal) is satisfied.
Such a plan presupposes a repertoire of world-altering
actions and the ability to choose and execute these ap-
propriately.

Monitoring the progress of subgoals is essential to
managing plan execution. For example, the monitor-
ing of a team during plan execution in business team
management [Marks et al., 2001]. This monitoring may
be centralised, where information about each element of
the team is collected in order to provide progress re-
ports to each team member, or distributed among team
members which both collect and share the information
on a network. Teams can accomplish complex, dynamic
tasks, such as in the 2006 surface team experiment at
NASA’s Ames Research Center, which studied a group of
humans and robots performing planetary surface explo-
ration tasks under the direction of an automated planner
[Pedersen et al., 2006). In this case it is important that
all team members understand which parts of the plan
have been accomplished, which are still to be completed,
and which are being currently undertaken|Perzanowski
et al., 1999)].

In dynamic environments such as those encountered
by mobile robots, plan execution needs runtime manage-
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ment [Pedersen et al., 2006]. This can be accomplished
through a variety of approaches, such as workflow ex-
ecution engines [Deelman et al., 2004], adaptive sched-
ulers [Lee et al., 2009], and automated planning systems
[Kephart and Chess, 2003]. Using these approaches al-
lows for failure management through fault tolerance and
task optimisation. These techniques require the track-
ing of goal accomplishment. This job can be performed
centrally by assigning it to a single agent (autonomous
or human), or it may be distributed by sharing it out
between several agents of the team.

This paper proposes an architecture for observing
agents and tracking the accomplishment of goals dur-
ing the execution of a plan. It makes use of information
available to it through an array of distributed sensors
to test for world states that attest to goal satisfaction.
The paper describes an experiment in which goal ac-
complishment by a teleoperated robot is supervised au-
tomatically using sensors at the worksite. These can
be located on the teleoperated robot (as in the exper-
iment), fixed at the worksite, or carried by a human
worker; but are most likely to be located on the robot
system, since these are needed there for other reasons
[Kephart and Chess, 2003]. The remainder of this paper
is structured as follows. Section 2 introduces the domain
of manual and automated goal accomplishment tracking.
Section 3 proposes an architecture for automatic goal ac-
complishment tracking. Section 4 evaluates the architec-
ture using a small mobile robot performing an industrial
maintenance task, while Section 5 briefly notes that the
architecture can be used to facilitate machine learning
by demonstration from a skilled human expert. Finally,
Section 6 presents some conclusions and directions for
future work.

2 Goal Accomplishment Tracking

Interest in the monitoring of the execution of plans is
focused on supporting the improvement of this execu-
tion, and the improvement of the monitoring itself [Lee
et al., 2009]. These improvements are initially motivated
by the specific domains they originate from, but tend to
be generalised later if the ideas are not domain-specific.
For example, in the business domain, languages such as
BPEL (Business Process Execution Language), seek to
describe the execution of business processes in order to
provide some process management capabilities, such as
lifecycle management, failure recovery, and a variety of
control regimes, while mostly ignoring the data being
transferred between those processes [Frank Leymann et
al.,]. Scientific workflow processing, such as is supported
by workflow management engines [Deelman et al., 2004]
is driven by the need to operate on large data sets [Son-
ntag et al., 2010], therefore placing more importance
on the data flowing between processes. Regardless of

low-level differences, these systems provide similar high-
level plan execution monitoring functionality, and seek
to solve similar problems at that level.

To track the progress of a plan’s execution, a moni-
toring system needs to be able to actively fetch or wait
for an update on goal statuses during execution. BPEL
does this through web service interfaces, whilst scientific
workflow management systems utilise log file parsing.
After the data is collected, it needs to be analysed for
patterns, simple and complex, that indicate the current
status of plan execution. Depending on the state of the
plan execution, it can continue, or be re-planned. This
process has been formalised by the Autonomic Comput-
ing community to support adaptive systems [Kephart
and Chess, 2003].

It is convenient to represent goals in the same form
as observed states of the world as provided by sen-
sors. Checking the accomplishment of a goal might
then be as simple as comparing it with a current
set of world-state representations. For example, if a
robot is equipped with a sensor which returns its posi-
tion in two-dimensional space, a locational goal might
be specified as ‘robot_at(250, 300)’. This can be di-
rectly compared to the output of the sensor, which
might return ‘robot_at(240, 300)’. A more sophisti-
cated arrangement would involve abstracting the goal
to ‘robot_at(waypoint)’ and providing additional knowl-
edge defining the waypoint in terms of a number of
sensory tests and satisfaction condition with respect to
those tests. In this case, the waypoint is associated with
a set of GPS coordinates of an area within which the
target is found, a specific barcode known to be present
at the target an image pattern to be matched against a
known landmark through the use of an on-board cam-
era. The satisfaction condition is that the current GPS
coordinates must be within bounds, and that a match
on either of the other sensory indicators would be suf-
ficient. Such straightforward arrangements would not
always suffice, because the relationship between sensory
data and actual world states is not always simple. Not
only does the sensitivity, range and signal-to-noise ratio
characteristics of a given sensor affect the interpretation
of its signals, but the satisfaction or failure of some goals
might involve a subtle alteration in sensed properties,
possibly including necessary state progressions or alter-
natives. Some of the literature on robot perception deals
with the control of uncertainty introduced by these com-
plications [Thrun, 2000] [Minguez and Montano, 2005].

Futhermore, not all goals are the same, but may have
different natures based on their objective and relation to
processing. In this paper we distinguish three types of
goals:

e Achieve goals [Dastani et al., 2006] are simple
expressions denoting a desired world state to be
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reached.

e Maintain goals [Dastani et al., 2006] are goals
that need to be protected (i.e. their accomplish-
ment tests must not be allowed to fail). Mainte-
nance goals require extra monitoring after they have
been initially accomplished, placing an extra burden
on the monitoring system.

e Opportunistic goals are goals associated with a
watch for particular events or world-states, the pres-
ence of which is considered favourable. Opportunis-
tic goals mirror maintain goals, in that rather than
demand checks for threats to goals, they encourage
checks for contingencies favourable to goal accom-
plishment.

These goal types require different monitoring support.
Achieve goals depend upon matching the required world-
state to the current state of the world. Maintain goals
seek to actively protect a desired state. This requires
tests sensitive to boundary conditions around the goal
state which suggest a threat, requiring protective actions
to be executed. Such protective actions can be included
the hierarchical plan graph as special annotations. Op-
portunistic goals must use tests to detect occurrences
known to promote the accomplishment of goals, as well
as the appropriate actions which may be similarly in-
cluded in the plan.

3 An Architecture for Automatic Goal
Accomplishment Tracking

This section proposes an architecture to provide goal
accomplishment tracking to support the situations de-
scribed in Section 2. This architecture is designed to
remove the need for agents to report progress at every
step, shifting this role back onto an analysis module in
charge of the tracking of plan execution progress. This
module monitors the world, using data provided by sen-
sors, for the changes expected to occur when each goal
has been accomplished. The module then updates a cen-
tral plan-tracking structure with the progress made (See
Figure 2).

This approach is centralised by design, to account for
the varying range of capabilities displayed by agents in
various domains. While some automated agents, such as
automated robots, might do goal accomplishment track-
ing internally to ensure proper execution of their as-
signed tasks, other more basic agents simply encounter
a situation and act in response without ever checking to
see if their goal is accomplished. In the case of human
or human-controlled agents, goal accomplishment is un-
derstood by the human in question but has no easy way
of being broadcast back to other agents without addi-
tional tools. As soon as any of these agents are to work
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together, a centralised approach to goal accomplishment
tracking is required.

3.1 Requirements

The architecture assumes the presence of several ele-
ments (See Figure 1), without which it has neither the
means nor the reason to fulfil its purpose.

e A plan to provide both a reason for the architecture
to be in place, and the framework for the analysis
module to operate within. Without a plan, agents
cannot know what changes to make to the world
state, and the analysis module cannot know what
changes to expect.

e One or more agents to effect changes on the
world. Without them, the plan cannot be executed,
and there exists no state changes to track.

e Sensors to allow the reading in of the state of the
world. Without them any changes caused by the
agents cannot be observed and tracked.

3.2 Runtime Activity

During runtime, the architecture feeds sensor inputs
through the analysis module, to perform relevant tests
(See Figure 2) and executes any additional functions re-
quired of it (See Section 3.3).

Inputs
For its most basic functions, the analysis module only
requires three types of inputs: the plan’s structure, de-
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sirable world states and actual world states.

e The Plan Tree is the name given to the data struc-
ture that holds the logical information about the
goals. This includes the overall hierarchy and the
relationship of the goals to one another, and goal
status (i.e. achieved, in progress, not started, and
maintaining).

e Desirable World States are generated during the
preparation step (See Section 3.4), these states are
fetched by the supervisor from a data storage ele-
ment, such as a lookup table.

e Actual World States consist of the information
reported by the sensors queried by the architecture.

Analysis

Processing the sensor data during runtime can be accom-
plished using a relatively simple algorithm. An example
solution is presented in Figure 3. This example iterates
through the goal list, checking for each goal (i) the avail-
ability of the required sensors, and (ii) whether or not
the sensor data matches the desired results.

for each goal G; do
flag «+— TRUE
for each sensor Sy in satisfaction_conditions (G;) do
if needed(Sy, G;) then
if power_up(Sk) then
wait(max.sensor.powerup.time)
end if
if inactive(Sk) then
message: “Can’t test G;, sensor Sy is inac-
tive”
flag + FALSE
break
else
if = match(Sk[Wi], Sk[W/]) then
flag «+ FALSE
break
end if
end if
end if
end for
if flag = TRUE then
message: “Goal G; is satisfied”
leave_on(Giy1)
end if
end for

Figure 3: Example Algorithm Testing for Goal Satisfac-
tion, Including Sensor Power Management

The algorithm calls on several functions explained be-
low:

e needed(Sk, G;) returns false if i) the satisfaction
conditions of G; contain an expression in disjunction
with Sk, and ii) that expression currently evaluates
to true; true otherwise.

e power_up(Sy) checks to see if Sy needs powering
up. If so, powers up S and returns true; false oth-
erwise.

e inactive(Sy) returns true if sensor Sy is not cur-
rently returning a valid world observation; false oth-
erwise.

o match(S[W], S[W]) returns true if world observa-
tion W agrees with corresponding goal observation
W', false otherwise.

e leave_on(G,,1) checks if the next goal (G;11) re-
quires any sensors already used by G1; all others are
powered down.

Note that this version of the algorithm does not distin-
guish between the three types of goals. To do that, the
algorithm of Figure 3 would need to be modified to pro-
vide special processing for maintenance goals and for op-
portunistic goals. Maintenance goals would need extra
guard tests and a stack of monitoring processes. Oppor-
tunistic goals need equivalent extra tests for favourable
circumstances with the associated stack of monitoring
processes. Once a goal was processed, these processes
would run continually until the algorithm terminated.

Output

To serve as a monitoring entity, the architecture needs
to be able to send messages. In its most basic form,
the architecture will post progress updates on the plan
data structure. This structure is centralised to allow up-
dates to be rapidly propagated to each other elements of
the system; for example, agents can periodically query
this central structure to get an up-to-date picture of
the plan’s completion status. The number of outputs
will vary based on individual implementations and their
needs for extra functionality. For example, a system re-
quiring some fault tolerance (See section 3.3), will need
to be able to request some form of re-planning.

Sensor Management

Managing the fusion of data from multiple sensors to
test for a single condition, and dealing with the number
of different sensors required by the architecture to be
useful, both create issues that must be overcome for the
architecture to be successful. The sensor fusion prob-
lem needs to be considered for each each goal if the ac-
complishment tracking for that goal relies on the input
of multiple sensors. Omne simple solution is to express
the relationship between the sensors as a set of boolean
functions as shown in Figure 4. The specification of how
sensory tests apply to each goal is performed during the
preparation step (see Section 3.4).

The advantage of knowing which sensors will be
needed for each goal is that predictions about sensor
uses can be made. This enables us to: (i) enact power
management policies (sensors can be turned on only
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when needed, and off when not), (ii) ensure sensors are
turned on early to ensure any sensor startup delays are
accounted for, and (iii) check sensors for malfunctions
ahead of use, leaving time for any potential re-planning
to be made. This sensor management is illustrated in
Figure 4, with Figure 4a showing a possible state for the
system to be in when supervising the accomplishment
of a goal GG;. (G requires tests on data from sensors
S1 and S5, providing world states W7 and Wy respec-
tively. These will be compared to desired world states
W{ and W{. The system is also pre-emptively preparing
sensors S1, S3, and Sy, which are required by goal Gs.
Figure 4b shows the state of the system after goal G is
accomplished. The accomplishment of goal G5 is being
supervised while sensors required by the monitoring of
goal G5 are being prepared. This kind of management is
especially important for mobile robots, because of they
typically have limited power and computing resources.

3.3 Fault Tolerance and Optimisation

A fault tolerant system has the ability to respond to
any event that might cause a problem at runtime [Ran-
dell, 1975]. Optimisation attempts to take advantage of
opportunities to improve the execution of plans during
runtime [Lee et al., 2009]. Both fault tolerance and op-
timisation are a feature of many current workflow mon-
itoring systems. Proposing approaches to dealing with
these processes is beyond the scope of this paper; how-
ever, facilitating the inclusion of such capabilities in this
architecture will broaden its usefulness.

Both fault-tolerance and optimisation require some
monitoring of the processes occurring in the system,
making the proposed architecture suitable to take on the
role of notifier. Any condition requiring fault-tolerant or
optimising processes to engage could be specified as a
maintenance (or opportunistic) goal in the overall hier-
archy, the realisation of which would trigger those pro-
cesses. Figure 2 shows how any re-planning needed by
these processes could be kept distinct from the analysis
module, only having an impact on the inputs and out-

puts used by the analysis.

3.4 Preparation

The architecture presented here is applicable to a wide
range of scenarios, and as such is designed in a high-level
and modular fashion. To prepare the automatic goal
execution tracking for a particular application(industrial
maintenance by robot), the following steps have to be
performed:

1. Enumerate available sensors. Sensors available
to the architecture must be found and recorded in a
list. It is necessary to include in the list whether or
not the sensors are bound to a particular location
or are mounted on a mobile platform.

2. Extract goal list. Before a series of tests for each
goal in the plan can be made, a list of those goals
must be drawn up.

3. Match goals with sensors. The two lists must
be cross-referenced to associate each goal with at
least one sensor. This match up will depend on sev-
eral factors: (i) the ability of the sensor to produce
meaningful information about the goal’s status, and
(ii) the location and mobility of the sensor (i.e. can
the sensor ‘sense’ at the right location).

4. Convert abstract goals to usable world states.
Each goal must be converted from an abstract
meaning to usable boundaries with which sensor
data can be classified. This forms our desirable
world states.

This process is demonstrated through an experiment
in the next section, where the architecture is tested with
real data collected by mobile robots sensors in the field.

4 Experimental Evaluation
4.1 Overview

This goal-tracking architecture is an essential component
to an “Assigned Responsibility” teleoperation framework
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currently being developed by the authors. This frame-
work allows the responsibility for the execution of in-
dividual subgoals in a plan to be explicitly assigned at
configuration time to specific operators (usually a human
operator or an automated operator) who accomplish the
subgoal by controlling a robot. Managing the change of
operator between subgoals requires a clear understand-
ing of what has been accomplished previously, to both
trigger the change, and to provide context to the opera-
tor beginning their time in control. This tracking must
be done independently of the operators to ensure conti-
nuity in the tracking regardless of operator capabilities,
by an analysis module (see Section 3) embedded in the
“Assigned Responsibility” interface.

To validate the goal accomplishment tracking archi-
tecture, an experimental approach has been chosen us-
ing a mobile field-robot and a series of simple tasks. The
first experiment consists of a baseline validation of the
sensors chosen when applying the preparation steps pre-
sented in Section 3.4. A second experiment evaluates
the ability of the chosen sensors to detect the successful
accomplishment of the goals in the field.

4.2 The Maintenance Photography Task

Automatic regular maintenance of physical equipment
requires a mobile robot to periodically visit a number of
key worksites, where the robot may perform tasks such
as photography, gathering sensor data on environmen-
tal conditions, physically probe the integrity of surfaces,
joints or attachments, remove panels and/or to change
out faulty components [Mann, 2008].

In this experimental scenario, a robot is teleoperated
around a series of five worksites (See Figure 5), aligning
itself close to each one in turn so as to be able to photo-
graph important objects. The goals of being at each pho-
tograph point are defined by a bounding circle of GPS
coordinates associated with the worksite and an image

for matching using the vision system. A goal is met only
if the robot’s current GPS coordinates fall within the
specified range and the vision system is suitably confi-
dent of a matching visual image. The remainder of this
section demonstrates the application of the automated
supervision system to this scenario.

4.3 The Mobile Field Robot Agent

The experiment uses a Coroware mobile field robot, built
on top of a Lynxmotion base with four driven wheels,
with an Intel D2700MUD Mini-ITX single-board com-
puter running Linux. In contains a steerable camera,
a modified 5 DoF manipulator arm (Figure 6) and is
equipped with a variety of sensors as described below.
It is linked via 802.11g wireless to a laptop and Logitech
game controller that serve as a teleoperation station.

Figure 6: The Coroware Mobile Robot

The robot and the teleoperation station run custom
Python-based code allowing commands to be sent from
the teleoperator to the robot and translated to low-level
motor commands. Sensor readings from the robot are
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transmitted back to the operator for processing on the
teleoperation station.

4.4 Experiment One: Sensor Testing

Overview

The robot supports a number of sensors typical for mo-
biles of this kind, including bump switches for obstacle
avoidance, battery level sensing, potentiometers sensing
angles on the manipulator arm and a force sensitive resis-
tor measuring gripper pressure. For the purpose of this
experiment, the important sensors include a global posi-
tioning system (GPS) module and a steerable video cam-
era. Position, velocity and direction data updates are ob-
tained from a PhidgetGPS board with a best-case circu-
lar error probability of 2.5m. Forward imagery for tele-
operation control is obtained through a front-mounted
1600 x 1200 pixel Logitech QuickCam Orbit AF camera,
which can be panned under software control through 189
degrees and tilted through 102 degrees.

Pattern recognition of landmarks and task states is
achieved by a Speeded-Up Robust Features (SURF) [Bay
et al., 2008] module from the Linux OpenCV library.
This is a scale and rotation invariant image matching al-
gorithm, which can be used to compare the camera input
to a reference image based on correspondences of interest
points in the two sources. We have found this algorithm
to quite reliable in the face of visual disturbances such
as changes in lighting due to the weather and interpos-
ing objects such as hands, tools etc. To understand how
the sensors behave in field conditions and to develop the
goal satisfaction tests, baseline measurements for those
sensors were first recorded.

Results

The GPS sensor was tested in a best-case scenario, in
an open park under clear skies. Seven series of roughly
one minute each, recorded over a period of three days
from the same location are plotted in Figure 7. This
totalled 1059 individual readings, which were found to
diverge on average from a calculated mean position by
3.53 meters. As Figure 7a shows however, some of these
readings diverge by up to 40 meters. Most of these di-
vergences occur early in the sample, as the calculated
location tends to converge towards the mean position
after a few seconds, but some occur later on in the sam-
ple as, presumably, the sensor loses contact with one or
more satellites. These eccentric readings tend to be in
the minority, and can be mitigated by calculating a mean
position using several seconds of readings.

These results motivated the choice of an appropriate
difference threshold of four meters as the criteria for suc-
cess in the GPS test. This four meter radius circle is
plotted in Figure 7. Figure 7b shows the readings con-
tained within the bounding circle.

Hessian T./ 300 400 500
nOctaves Target No Target | Target No Target | Target No Target
2 21.89 3.943 20.78 4.525 19.71 5.15
3 19.24 5.257 23.16 4.33 19.78 4.46
4 21.91 3.567 24.33 5.8 19.33 3.47
5 24.19 3.767 25.46 4.237 17.63 3.34
6 23.26 3.607 23.89 4.81 20.73 5.11

(a) Key Points Detected for Each nOctave / Hessian Threshold
Combination

Hessian T./ 300 400 500
nOctaves ‘ ‘

2 5.55 4.59 3.83

3 3.66 5.35 4.43

4 6.14 4.19 5.57

5 6.42 6.01 5.28

6 6.45 4.97 4.06

(b) Signal-to-noise Ratio for Each nOctave / Hessian Threshold
Combination

Table 1: Results of the SURF Algorithm Tests

The behaviour of SURF was studied in the laboratory
under systematic adjustments to two key parameters,
nOctaves and hessianThreshold, in order to optimise its
performance. nOctaves sets the number of Gaussian
pyramid octaves used for matching, which affects the
grain size of detected features. hessianThreshold sets
the acceptable feature strength for retention of matched
interest points.

The algorithm was modified to return a confidence
value expressing the number of matched interest points
in real time. Table 1 shows number of observed matched
points and signal-to-noise ratios for 2-6 octaves and Hes-
sian thresholds over the recommended range of 300-500.
We chose nOctaves of 6 and a hessianThreshold of 300
because these returned the best signal-to-noise ratio and
a reasonable number of points on our test target object.

4.5 Experiment Two: Field Testing

Overview

The experimental scenario (See Section 4.2) describes a
task where a robot is required to navigate around a work
site and take photographs of five landmarks. This exper-
iment was designed to verify that sensor readings could
be used to confirm the accomplishment of the goals de-
tailed in the plan. The sensors and processing software
tested in Section 4.4 were mounted on the Corobot (De-
scribed in Section 4.3) which was then driven around the
test site (Pictured in Figure 5) while its presence at the
required location was confirmed by the sensor tests.

Results

Readings from the GPS sensor were taken at each desired
position, and the distance of these readings from the
desired coordinates was computed using the haversine
formula. The recorded distance is plotted over time in
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number of matched interest points over a range of angu-
lar displacements of the robot with respect to the nor-
mal. Figure 9 profiles these counts for each target object
in our field experiment, together with a non-target count
taken by pointing the robot in a random direction away
from each object.
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Figure 8: Recorded Distance from the Reference GPS
Coordinates over Time

Figure 8. When the antenna of this device returns to a
marked position, its behaviour showed a characteristic
settling over a period of 60 seconds, as the position error
fell to a low of about 4m at worst. This level of accuracy
could probably be improved, but was sufficient for our
purpose.

The sensitivity of SURF to variations in viewing angle
in the horizontal was evaluated by recording the average
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Figure 9: Key Points Detected by the SURF Algorithm
at Each Waypoint

The number of matched points tended to decline sys-
tematically as angular displacement increased. For the
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purposes of placing a camera for maintenance photog-
raphy, it would be better if the range of acceptable an-
gles satisfying the location goal was not too large. The
results show that by setting a confidence threshold of
approximately 20, the robot could almost always distin-
guish between target and non-target objects when the
robot was in the correct position for photography, i.e.
approximately normal to the object of interest.

The Boolean conditions of each subgoal (being at one
of the five photography points), indicate that the cur-
rent GPS coordinates fell within a bounding circle of
radius 4m centred near each target object and that the
SURF recogniser returned a sufficiently confident indi-
cation that the target object had been acquired. In all
and only those times when the robot was in a suitable
position for the photograph, this returned true.

Other goal states can be detected using these sensors.
The object designated ‘Test Article’ in Figure 6 has a
panel with a hatch from which the robot might be re-
quired to unscrew four bolts, remove it to gain access,
withdraw a faulty part, replace it with a working part,
then replace the hatch and secure it. A test of the sub-
goal of the hatch being removed was performed by train-
ing the SURF algorithm to recognise an open hatchway.
Under a similar range of angles and visual disturbances,
the tests reliably recognised the state of the hatch; open
or closed. Note that these changes would be detected
whether a human or robot agency had made them.

5 Supporting Learning by
Demonstration

The teleoperation experiments in our laboratory require
examples of automated controllers to be mixed with hu-
man control. One of the benefits of teleoperation is the
opportunity to learn skilled action from a human expert,
delivered directly to the machine in real contexts [Mann
and Small, 2012]. Learning by Demonstration (LbD) is
an approach involving the extraction of a robot control
policy from a set of demonstrations of the target skill,
recorded from the sensors and motor outputs (for a re-
view of these approaches see [Argall et al., 2009]).

Goal accomplishment tracking is important in this
context because it can be used to partition large demon-
stration datasets containing multiple, possibly very dif-
ferent functional relationships into manageable, more
easily learned sub-units. For example, Isaac & Sam-
mut [Isaac and Sammut, 2003] were able to use human
demonstrations of basic flying manoeuvres to learn com-
pact, robust and transparent controllers (‘behavioural
clones’) which both discovered how the pilots were set-
ting goals and then learned how to cause the simulated
aircraft to meet those goals. By learning how to set
goals, and then learning how to control a dynamic sys-
tem to reach those goals, the cloned behaviour can be

learned more easily and show much greater robustness
to changed conditions or plans than when learned from
undifferentiated demonstrations of an entire task. We
believe that automatic goal monitoring is essential to
switch between these learned modular units of behaviour
during the execution of complex tasks in dynamic envi-
ronments, whether by human or robotic agency.

6 Conclusion

This paper proposes an architecture for monitoring a
plan’s execution. By placing an automated goal accom-
plishment tracking module at the center of a plan exe-
cution system, it is possible to combine data provided
by a variety of sensors to provide accurate tracking of
each goal’s accomplishment in the plan. This supervi-
sion approach removes the need for agents to update a
plan with their progress, and the centralised nature of
the process allows for the rapid dissemination of plan
progress information. The application of the architec-
ture was demonstrated using an example maintenance
task as executed by a mobile robot. The architecture is
modular in nature, and well-suited for supporting often-
needed functionality in the planning domain including
fault-tolerance and optimisation, in addition to provid-
ing automatic segmentation to information used in learn-
ing by demonstration techniques.

Future work will implement of this architecture in a
context where both human and machine agencies will
share control of a single mobile robot. The ability to suc-
cessfully track the accomplishment of goals will be cru-
cial in this sliding automation environment where control
responsibility must be clear at all times to avoid conflict.
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