167 research outputs found

    Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice

    Get PDF
    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible

    CCR7 is involved in the migration of neutrophils to lymph nodes

    Get PDF
    Increasing evidence suggests that neutrophils may participate in the regulation of adaptive immune responses, and can reach draining lymph nodes and cross-prime naive T cells. The aim of this study was to identify the mechanism(s) involved in the migration of neutrophils to the draining lymph nodes. We demonstrate that a subpopulation of human and mouse neutrophils express CCR7. CCR7 is rapidly expressed at the membrane upon stimulation. In vitro, stimulated human neutrophils migrate in response to the CCR7 ligands CCL19 and CCL21. In vivo, injection of complete Freund adjuvant induces a rapid recruitment of neutrophils to the lymph nodes in wild-type mice but not in Ccr7−/− mice. Moreover, intradermally injected interleukin-17–and granulocyte-macrophage colony-stimulating factor–stimulated neutrophils from wild-type mice, but not from Ccr7−/− mice, migrate to the draining lymph nodes. These results identify CCR7 as a chemokine receptor involved in the migration of neutrophils to the lymph nodes

    Identification of CIITA Regulated Genetic Module Dedicated for Antigen Presentation

    Get PDF
    The class II trans-activator CIITA is a transcriptional co-activator required for the expression of Major Histocompatibility Complex (MHC) genes. Although the latter function is well established, the global target-gene specificity of CIITA had not been defined. We therefore generated a comprehensive list of its target genes by performing genome-wide scans employing four different approaches designed to identify promoters that are occupied by CIITA in two key antigen presenting cells, B cells and dendritic cells. Surprisingly, in addition to MHC genes, only nine new targets were identified and validated by extensive functional and expression analysis. Seven of these genes are known or likely to function in processes contributing to MHC-mediated antigen presentation. The remaining two are of unknown function. CIITA is thus uniquely dedicated for genes implicated in antigen presentation. The finding that CIITA regulates such a highly focused gene expression module sets it apart from all other transcription factors, for which large-scale binding-site mapping has indicated that they exert pleiotropic functions and regulate large numbers of genes

    Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency

    Get PDF
    One of the severe combined immunodeficiencies (SCIDs), which is caused by a genetic defect in the signal transduction pathways involved in T-cell activation, is the ZAP70 deficiency. Mutations in ZAP70 lead to both abnormal thymic development and defective T-cell receptor (TCR) signaling of peripheral T-cells. In contrast to the lymphopenia in most SCID patients, ZAP70-deficient patients have lymphocytosis, despite the selective absence of CD8+ T-cells. The clinical presentation is usually before 2 years of age with typical findings of SCID. Here, we present three new ZAP70-deficient patients who vary in their clinical presentation. One of the ZAP70-deficient patients presented as a classical SCID, the second patient presented as a healthy looking wheezy infant, whereas the third patient came to clinical attention for the eczematous skin lesions simulating atopic dermatitis with eosinophilia and elevated immunoglobulin E (IgE), similar to the Omenn syndrome. This study illustrates that awareness of the clinical heterogeneity of ZAP70 deficiency is of utmost importance for making a fast and accurate diagnosis, which will contribute to the improvement of the adequate treatment of this severe immunodeficiency

    Clinical experience in T cell deficient patients

    Get PDF
    T cell disorders have been poorly understood until recently. Lack of knowledge of underlying molecular mechanisms together with incomplete data on long term outcome have made it difficult to assess prognosis and give the most effective treatment. Rapid progress in defining molecular defects, improved supportive care and much improved results from hematopoietic stem cell transplantation (HSCT) now mean that curative treatment is possible for many patients. However, this depends on prompt recognition, accurate diagnosis and careful treatment planning

    Multiple Histone Methyl and Acetyltransferase Complex Components Bind the HLA-DRA Gene

    Get PDF
    Major histocompatibility complex class II (MHC-II) genes are fundamental components that contribute to adaptive immune responses. While characterization of the chromatin features at the core promoter region of these genes has been studied, the scope of histone modifications and the modifying factors responsible for activation of these genes are less well defined. Using the MHC-II gene HLA-DRA as a model, the extent and distribution of major histone modifications associated with active expression were defined in interferon-γ induced epithelial cells, B cells, and B-cell mutants for MHC-II expression. With active transcription, nucleosome density around the proximal regulatory region was diminished and histone acetylation and methylation modifications were distributed throughout the gene in distinct patterns that were dependent on the modification examined. Irrespective of the location, the majority of these modifications were dependent on the binding of either the X-box binding factor RFX or the class II transactivator (CIITA) to the proximal regulatory region. Importantly, once established, the modifications were stable through multiple cell divisions after the activating stimulus was removed, suggesting that activation of this system resulted in an epigenetic state. A dual crosslinking chromatin immunoprecipitation method was used to detect histone modifying protein components that interacted across the gene. Components of the MLL methyltransferase and GCN5 acetyltransferase complexes were identified. Some MLL complex components were found to be CIITA independent, including MLL1, ASH2L and RbBP5. Likewise, GCN5 containing acetyltransferase complex components belonging to the ATAC and STAGA complexes were also identified. These results suggest that multiple complexes are either used or are assembled as the gene is activated for expression. Together the results define and illustrate a complex network of histone modifying proteins and multisubunit complexes participating in MHC-II transcription

    Disruption of Growth Hormone Receptor Prevents Calorie Restriction from Improving Insulin Action and Longevity

    Get PDF
    Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR) is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO) in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15%) CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30%) CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT) in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT) in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice

    On the biological relevance of MHC class II and B7 expression by tumour cells in melanoma metastases

    Get PDF
    A large number of studies have indicated that specific immune reactivity plays a crucial role in the control of malignant melanoma. In this context, expression of MHC I, MHC II and B7 molecules by melanoma cells is seen as relevant for the immune response against the tumour. For a better understanding of the biological relevance of MHC II and B7 expression by tumour cells in metastatic melanoma, we studied the expression of these molecules in melanoma metastases in relation to the inflammatory response, regression of the tumour and survival from 27 patients treated with biochemotherapy (30 mg m−2 Cisplatin and 250 mg m−2 decarbazine (dimethyl-triazene-imidazole-carboxamide, DTIC) on days 1–3 i.v., and 107 IU IFN-α2b 3 days a week s.c., q. 28d). In 19 out of 27 lesions studied, we found expression of MHC II by the tumour cells, while only in one out of 11 tumour biopsies obtained from untreated metastatic melanoma patients, MHC II expression was detected. Expression of B7.1 and B7.2 by tumour cells was found in nine out of 24 and 19 out of 24 lesions, respectively. In all cases where B7.1 expression was found, expression of B7.2 by the tumour cells was also seen. In general, no or only few inflammatory cells positive for B7 were found. Expression of MHC II by tumour cells was positively correlated with the presence of tumour-infiltrating lymphocytes, regression of the lesion, and with time to progression (TTP) and overall survival (OS) of the patient. However, no significant correlation between B7.1 or B7.2 expression and regression of the tumour, TTP or OS was found. In light of other recent findings, these data altogether do support a role as biomarker for MHC II expression by tumour cells; however, its exact immunological pathomechanism(s) remain to be established

    Insulin Concentration Modulates Hepatic Lipid Accumulation in Mice in Part via Transcriptional Regulation of Fatty Acid Transport Proteins

    Get PDF
    Fatty liver disease (FLD) is commonly associated with insulin resistance and obesity, but interestingly it is also observed at low insulin states, such as prolonged fasting. Thus, we asked whether insulin is an independent modulator of hepatic lipid accumulation.In mice we induced, hypo- and hyperinsulinemia associated FLD by diet induced obesity and streptozotocin treatment, respectively. The mechanism of free fatty acid induced steatosis was studied in cell culture with mouse liver cells under different insulin concentrations, pharmacological phosphoinositol-3-kinase (PI3K) inhibition and siRNA targeted gene knock-down. We found with in vivo and in vitro models that lipid storage is increased, as expected, in both hypo- and hyperinsulinemic states, and that it is mediated by signaling through either insulin receptor substrate (IRS) 1 or 2. As previously reported, IRS-1 was up-regulated at high insulin concentrations, while IRS-2 was increased at low levels of insulin concentration. Relative increase in either of these insulin substrates, was associated with an increase in liver-specific fatty acid transport proteins (FATP) 2&5, and increased lipid storage. Furthermore, utilizing pharmacological PI3K inhibition we found that the IRS-PI3K pathway was necessary for lipogenesis, while FATP responses were mediated via IRS signaling. Data from additional siRNA experiments showed that knock-down of IRSs impacted FATP levels.States of perturbed insulin signaling (low-insulin or high-insulin) both lead to increased hepatic lipid storage via FATP and IRS signaling. These novel findings offer a common mechanism of FLD pathogenesis in states of both inadequate (prolonged fasting) and ineffective (obesity) insulin signaling

    Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms?

    Get PDF
    The predominant molecular symptom of ageing is the accumulation of altered gene products. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin activity. Physiological and other approaches indicate that mitochondria may also regulate ageing. A mechanism is proposed which links diet, exercise and mitochondria-dependent changes in NAD/NADH ratio to intracellular generation of altered proteins. It is suggested that ad libitum feeding conditions decrease NAD availability which also decreases metabolism of the triose phosphate glycolytic intermediates, glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate, which can spontaneously decompose into methylglyoxal (MG). MG is a highly toxic glycating agent and a major source of protein advanced-glycosylation end-products (AGEs). MG and AGEs can induce mitochondrial dysfunction and formation of reactive oxygen species (ROS), as well as affect gene expression and intracellular signalling. In dietary restriction–induced fasting, NADH would be oxidised and NAD regenerated via mitochondrial action. This would not only activate sirtuins and extend lifespan but also suppress MG formation. This proposal can also explain the apparent paradox whereby increased aerobic activity suppresses formation of glycoxidized proteins and extends lifespan. Variation in mitochondrial DNA composition and consequent mutation rate, arising from dietary-controlled differences in DNA precursor ratios, could also contribute to tissue differences in age-related mitochondrial dysfunction
    corecore