17 research outputs found

    The Tensile Behaviour of Highly Filled High-Density Polyethylene Quaternary Composites: Weld-Line Effects, DIC Curiosities and Shifted Deformation Mechanisms

    Get PDF
    The interactive effects between additives and weld lines, which are frequent injection-moulding defects, were studied in high-density polyethylene (HDPE) and compared to weld-line-free reference samples. These materials were formulated around a D- and I-optimal experimental design, based on a quadratic Scheffé polynomial model, with up to 60 wt% calcium carbonate, masterbatched carbon black and a stabiliser package. Where reasonable and appropriate, the behaviours of the systems were modelled using statistical techniques, for a better understanding of the underlying trends. The characterisations were performed through the use of conventional tensile testing, digital image correlation (DIC) and scanning electron microscopy (SEM). A range of complex interactive effects were found during conventional tensile testing, with DIC used to better understand and explain these effects. SEM is used to better understand the failure mechanics of some of these systems through fractography, particularly regarding particle effects. A measure is introduced to quantify the deviation of the pre-yield deformation curve from the ideal elastic case. Novel analysis of DIC results is proposed, through the use of combined time-series plots and measures quantifying the extent and localisation of peak deformation. Through this, it could be found that strong shifts in the deformation mechanisms occur as a function of formulation and the presence/absence of weld lines. Primarily, changes are noted in the onset of continuous inter- and intralamellar slip and cavitation/fibrillation, seen through the onset of localised deformation and stress-whitening

    Grenzflächen beim Mehrkunststoffspritzgießen

    Get PDF
    Aufbauend auf den Grundlagen der Standard- und Mehrkunststoffspritzgießtechnik sowie der verarbeitungsinduzierten Grenzflächen (Bindenaht, Zwei-K-Grenzflächen) erfolgt eine detaillierte experimentelle Analyse von wichtigen Einflussfaktoren. Dabei werden Material- und Prozessparameter variiert und deren Auswirkungen auf die resultierende Verbundfestigkeit untersucht. Es wird auf das komplexe Zusammenspiel der Formänderungen und dadurch veränderter Wärmetransportbedingungen eingegangen. Im theoretischen Teil der Arbeit werden die experimentellen Erkenntnisse zur Festlegung der Anfangs- und Randbedingungen eines zweidimensionalen Berechnungsmodells angewandt, so dass die für eine Grenzfläche relevanten Abkühl- und Temperaturausgleichsabläufe nachgebildet werden können. Schwerpunkt ist dabei die Anpassung der lokal unterschiedlichen Wärmeübergangsbedingungen hinsichtlich der einzelnen Prozessphasen. Im Ergebnis der Analyse der Einflussgrößen konnte ein Beitrag zur Optimierung der Prozessführung und somit der Verbundfestigkeit erbracht werden

    Layered Double Hydroxide (MgFeAl-LDH)-Based Polypropylene (PP) Nanocomposite: Mechanical Properties and Thermal Degradation

    No full text
    This work analyzes the thermal degradation and mechanical properties of iron (Fe)-containing MgAl layered double hydroxide (LDH)-based polypropylene (PP) nanocomposite. Ternary metal (MgFeAl) LDHs were prepared using the urea hydrolysis method, and Fe was used in two different concentrations (5 and 10 mol%). Nanocomposites containing MgFeAl-LDH and PP were prepared using the melt mixing method by a small-scale compounder. Three different loadings of LDHs were used in PP (2.5, 5, and 7.5 wt%). Rheological properties were determined by rheometer, and flammability was studied using the limiting oxygen index (LOI) and UL94 (V and HB). Color parameters (L*, a*, b*) and opacity of PP nanocomposites were measured with a spectrophotometer. Mechanical properties were analyzed with a universal testing machine (UTM) and Charpy impact test. The thermal behavior of MgFeAl-LDH/PP nanocomposites was studied using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The morphology of LDH/PP nanocomposites was analyzed with a scanning electron microscope (SEM). A decrease in melt viscosity and increase in burning rate were observed in the case of iron (Fe)-based PP nanocomposites. A decrease in mechanical properties interpreted as increased catalytic degradation was also observed in iron (Fe)-containing PP nanocomposites. Such types of LDH/PP nanocomposites can be useful where faster degradation or faster recycling of polymer nanocomposites is required because of environmental issues

    The tensile behaviour of highly filled high-density polyethylene quaternary composites : weld-line effects, DIC curiosities and shifted deformation mechanisms

    Get PDF
    The interactive effects between additives and weld lines, which are frequent injectionmoulding defects, were studied in high-density polyethylene (HDPE) and compared to weld-line-free reference samples. These materials were formulated around a D- and I-optimal experimental design, based on a quadratic Scheffé polynomial model, with up to 60 wt% calcium carbonate, masterbatched carbon black and a stabiliser package. Where reasonable and appropriate, the behaviours of the systems were modelled using statistical techniques, for a better understanding of the underlying trends. The characterisations were performed through the use of conventional tensile testing, digital image correlation (DIC) and scanning electron microscopy (SEM). A range of complex interactive effects were found during conventional tensile testing, with DIC used to better understand and explain these effects. SEM is used to better understand the failure mechanics of some of these systems through fractography, particularly regarding particle effects. A measure is introduced to quantify the deviation of the pre-yield deformation curve from the ideal elastic case. Novel analysis of DIC results is proposed, through the use of combined time-series plots and measures quantifying the extent and localisation of peak deformation. Through this, it could be found that strong shifts in the deformation mechanisms occur as a function of formulation and the presence/absence of weld lines. Primarily, changes are noted in the onset of continuous inter- and intralamellar slip and cavitation/fibrillation, seen through the onset of localised deformation and stress-whitening.Techsparks (Pty) Ltd. and Technology and Human Resources for Industry Programme (THRIP).http://www.mdpi.com/journal/polymerspm2022Chemical Engineerin

    The Tensile Behaviour of Highly Filled High-Density Polyethylene Quaternary Composites: Weld-Line Effects, DIC Curiosities and Shifted Deformation Mechanisms

    No full text
    The interactive effects between additives and weld lines, which are frequent injection-moulding defects, were studied in high-density polyethylene (HDPE) and compared to weld-line-free reference samples. These materials were formulated around a D- and I-optimal experimental design, based on a quadratic Scheffé polynomial model, with up to 60 wt% calcium carbonate, masterbatched carbon black and a stabiliser package. Where reasonable and appropriate, the behaviours of the systems were modelled using statistical techniques, for a better understanding of the underlying trends. The characterisations were performed through the use of conventional tensile testing, digital image correlation (DIC) and scanning electron microscopy (SEM). A range of complex interactive effects were found during conventional tensile testing, with DIC used to better understand and explain these effects. SEM is used to better understand the failure mechanics of some of these systems through fractography, particularly regarding particle effects. A measure is introduced to quantify the deviation of the pre-yield deformation curve from the ideal elastic case. Novel analysis of DIC results is proposed, through the use of combined time-series plots and measures quantifying the extent and localisation of peak deformation. Through this, it could be found that strong shifts in the deformation mechanisms occur as a function of formulation and the presence/absence of weld lines. Primarily, changes are noted in the onset of continuous inter- and intralamellar slip and cavitation/fibrillation, seen through the onset of localised deformation and stress-whitening

    Effect of Filler Synergy and Cast Film Extrusion Parameters on Extrudability and Direction-Dependent Conductivity of PVDF/Carbon Nanotube/Carbon Black Composites

    No full text
    In the present study, melt-mixed composites based of poly (vinylidene fluoride) (PVDF) and fillers with different aspect ratios (carbon nanotubes (CNTs), carbon black (CB)) and their mixtures in composites were investigated whereby compression-molded plates were compared with melt-extruded films. The processing-related orientation of CNTs with a high aspect ratio leads to direction-dependent electrical and mechanical properties, which can be reduced by using mixed filler systems with the low aspect ratio CB. An upscaling of melt mixing from small scale to laboratory scale was carried out. From extruded materials, films were prepared down to a thickness of 50 µm by cast film extrusion under variation of the processing parameters. By combining CB and CNTs in PVDF, especially the electrical conductivity through the film could be increased compared to PVDF/CNT composites due to additional contact points in the sample thickness. The alignment of the fillers in the two directions within the films was deduced from the differences in electrical and mechanical film properties, which showed higher values in the extrusion direction than perpendicular to it

    Multi-functional powder coating materials for material bonding in metal-plastic joints: Presentation held at Conference "Modern Materials and Manufacturing", 23-26 April 2019, Tallinn

    No full text
    Caused by the demands of lowering the fuel consumption the transportation industry enhances their efforts of weight-reduction. For that reason a multi-material design and the use of polymeric and polymeric fiber reinforced structures become more and more important. The steadily increasing use of these materials in combination with metal parts made it necessary to change the joining technologies from mechanical joining to adhesive joining. Therefore a further technology step is needed whereas the glue is applied, followed by the assembling. Our goal was to develop powder coating materials with an additional latent adhesive function which not only act as corrosion protection for the metal and for the optical appearance but also comprise a latent reactive adhesive function which can be used to generate metal-plastic joints via highly efficient production chains

    Effect of Molar Mass on Critical Specific Work of Flow for Shear-Induced Crystal Nucleation in Poly (l-Lactic Acid)

    No full text
    The concept of specific work of flow has been applied for the analysis of critical shearing conditions for the formation of crystal nuclei in poly (l-lactic acid) (PLLA). Systematic variation in both time and rate of shearing the melt in a parallel-plate rheometer revealed that these parameters are interconvertible regarding the shear-induced formation of crystal nuclei; that is, low shear rate can be compensated for by increasing the shear time and vice versa. This result supports the view that critical shearing conditions can be expressed by a single quantity, providing additional options for tailoring polymer processing routes when enhanced nuclei formation is desired/unwanted. Analysis of PLLA of different mass-average molar masses of 70, 90, 120, and 576 kDa confirmed improved shear-induced crystal nucleation for materials of higher molar mass, with critical specific works of flow, above which shear-induced nuclei formation occurs, of 550, 60, 25, and 5 kPa, respectively
    corecore