65 research outputs found
ACCEPTED MANUSCRIPT Bias in Markov Models of Disease
Abstract We examine bias in Markov models of diseases, including both chronic and infectious diseases. We consider two common types of Markov disease models: ones where disease progression changes by severity of disease, and ones where progression of disease changes in time or by age. We find sufficient conditions for bias to exist in models with aggregated transition probabilities when compared to models with state/time dependent transition probabilities. We also find that when aggregating data to compute transition probabilities, bias increases with the degree of data aggregation. We illustrate by examining bias in Markov models of Hepatitis C, Alzheimer's disease, and lung cancer using medical data and find that the bias is significant depending on the method used to aggregate the data. A key implication is that by not incorporating state/time dependent transition probabilities, studies that use Markov models of diseases may be significantly overestimating or underestimating disease progression. This could potentially result in incorrect recommendations from cost-effectiveness studies and incorrect disease burden forecasts
Association of Simulated COVID-19 Vaccination and Nonpharmaceutical Interventions With Infections, Hospitalizations, and Mortality
IMPORTANCE Vaccination against SARS-CoV-2 has the potential to significantly reduce transmission and COVID-19 morbidity and mortality. The relative importance of vaccination strategies and nonpharmaceutical interventions (NPIs) is not well understood. OBJECTIVE To assess the association of simulated COVID-19 vaccine efficacy and coverage scenarios with and without NPIs with infections, hospitalizations, and deaths. DESIGN, SETTING, AND PARTICIPANTS An established agent-based decision analytical model was used to simulate COVID-19 transmission and progression from March 24, 2020, to September 23, 2021. The model simulated COVID-19 spread in North Carolina, a US state of 10.5 million people. A network of 1 017 720 agents was constructed from US Census data to represent the statewide population. EXPOSURES Scenarios of vaccine efficacy (50% and 90%), vaccine coverage (25%, 50%, and 75% at the end of a 6-month distribution period), and NPIs (reduced mobility, school closings, and use of face masks) maintained and removed during vaccine distribution. MAIN OUTCOMES AND MEASURES Risks of infection from the start of vaccine distribution and risk differences comparing scenarios. Outcome means and SDs were calculated across replications. RESULTS In the worst-case vaccination scenario (50% efficacy, 25%coverage), a mean (SD) of 2 231 134 (117 867) new infections occurred after vaccination began with NPIs removed, and a mean (SD) of 799 949 (60 279) new infections occurred with NPIs maintained during 11 months. In contrast, in the best-case scenario (90% efficacy, 75%coverage), a mean (SD) of 527 409 (40 637) new infections occurred with NPIs removed and a mean (SD) of 450 575 (32 716) new infections occurred with NPIs maintained. With NPIs removed, lower efficacy (50%) and higher coverage (75%) reduced infection risk by a greater magnitude than higher efficacy (90%) and lower coverage (25%) compared with theworst-case scenario (mean [SD] absolute risk reduction, 13%[1%] and 8%[1%], respectively). CONCLUSIONS AND RELEVANCE Simulation outcomes suggest that removing NPIs while vaccines are distributed may result in substantial increases in infections, hospitalizations, and deaths. Furthermore, as NPIs are removed, higher vaccination coverage with less efficacious vaccines can contribute to a larger reduction in risk of SARS-CoV-2 infection compared with more efficacious vaccines at lower coverage. These findings highlight the need for well-resourced and coordinated efforts to achieve high vaccine coverage and continued adherence to NPIs before many prepandemic activities can be resumed
Use of Modeling to Inform Decision Making in North Carolina during the COVID-19 Pandemic: A Qualitative Study
Background. The COVID-19 pandemic has popularized computer-based decision-support models, which are commonly used to inform decision making amidst complexity. Understanding what organizational decision makers prefer from these models is needed to inform model development during this and future crises. Methods. We recruited and interviewed decision makers from North Carolina across 9 sectors to understand organizational decision-making processes during the first year of the COVID-19 pandemic (N = 44). For this study, we identified and analyzed a subset of responses from interviewees (n = 19) who reported using modeling to inform decision making. We used conventional content analysis to analyze themes from this convenience sample with respect to the source of models and their applications, the value of modeling and recommended applications, and hesitancies toward the use of models. Results. Models were used to compare trends in disease spread across localities, estimate the effects of social distancing policies, and allocate scarce resources, with some interviewees depending on multiple models. Decision makers desired more granular models, capable of projecting disease spread within subpopulations and estimating where local outbreaks could occur, and incorporating a broad set of outcomes, such as social well-being. Hesitancies to the use of modeling included doubts that models could reflect nuances of human behavior, concerns about the quality of data used in models, and the limited amount of modeling specific to the local context. Conclusions. Decision makers perceived modeling as valuable for informing organizational decisions yet described varied ability and willingness to use models for this purpose. These data present an opportunity to educate organizational decision makers on the merits of decision-support modeling and to inform modeling teams on how to build more responsive models that address the needs of organizational decision makers.HighlightsOrganizations from a diversity of sectors across North Carolina (including public health, education, business, government, religion, and public safety) have used decision-support modeling to inform decision making during COVID-19.Decision makers wish for models to project the spread of disease, especially at the local level (e.g., individual cities and counties), and to help estimate the outcomes of policies.Some organizational decision makers are hesitant to use modeling to inform their decisions, stemming from doubts that models could reflect nuances of human behavior, concerns about the accuracy and precision of data used in models, and the limited amount of modeling available at the local level
Cross-sector decision landscape in response to COVID-19: A qualitative network mapping analysis of North Carolina decision-makers
Introduction The COVID-19 pandemic response has demonstrated the interconnectedness of individuals, organizations, and other entities jointly contributing to the production of community health. This response has involved stakeholders from numerous sectors who have been faced with new decisions, objectives, and constraints. We examined the cross-sector organizational decision landscape that formed in response to the COVID-19 pandemic in North Carolina. Methods We conducted virtual semi-structured interviews with 44 organizational decision-makers representing nine sectors in North Carolina between October 2020 and January 2021 to understand the decision-making landscape within the first year of the COVID-19 pandemic. In line with a complexity/systems thinking lens, we defined the decision landscape as including decision-maker roles, key decisions, and interrelationships involved in producing community health. We used network mapping and conventional content analysis to analyze transcribed interviews, identifying relationships between stakeholders and synthesizing key themes. Results Decision-maker roles were characterized by underlying tensions between balancing organizational mission with employee/community health and navigating organizational vs. individual responsibility for reducing transmission. Decision-makers' roles informed their perspectives and goals, which influenced decision outcomes. Key decisions fell into several broad categories, including how to translate public health guidance into practice; when to institute, and subsequently loosen, public health restrictions; and how to address downstream social and economic impacts of public health restrictions. Lastly, given limited and changing information, as well as limited resources and expertise, the COVID-19 response required cross-sector collaboration, which was commonly coordinated by local health departments who had the most connections of all organization types in the resulting network map. Conclusions By documenting the local, cross-sector decision landscape that formed in response to COVID-19, we illuminate the impacts different organizations may have on information/misinformation, prevention behaviors, and, ultimately, health. Public health researchers and practitioners must understand, and work within, this complex decision landscape when responding to COVID-19 and future community health challenges
Can vaccine prioritization reduce disparities in COVID-19 burden for historically marginalized populations?
SARS-CoV-2 vaccination strategies were designed to reduce COVID-19 mortality, morbidity, and health inequities. To assess the impact of vaccination strategies on disparities in COVID-19 burden among historically marginalized populations (HMPs), e.g. Black race and Hispanic ethnicity, we used an agent-based simulation model, populated with census-tract data from North Carolina. We projected COVID-19 deaths, hospitalizations, and cases from 2020 July 1 to 2021 December 31, and estimated racial/ethnic disparities in COVID-19 outcomes. We modeled 2-stage vaccination prioritization scenarios applied to sub-groups including essential workers, older adults (65+), adults with high-risk health conditions, HMPs, or people in low-income tracts. Additionally, we estimated the effects of maximal uptake (100% for HMP vs. 100% for everyone), and distribution to only susceptible people. We found strategies prioritizing essential workers, then older adults led to the largest mortality and case reductions compared to no prioritization. Under baseline uptake scenarios, the age-adjusted mortality for HMPs was higher (e.g. 33.3%-34.1% higher for the Black population and 13.3%-17.0% for the Hispanic population) compared to the White population. The burden on HMPs decreased only when uptake was increased to 100% in HMPs; however, the Black population still had the highest relative mortality rate even when targeted distribution strategies were employed. If prioritization schemes were not paired with increased uptake in HMPs, disparities did not improve. The vaccination strategies publicly outlined were insufficient, exacerbating disparities between racial and ethnic groups. Strategies targeted to increase vaccine uptake among HMPs are needed to ensure equitable distribution and minimize disparities in outcomes
The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model
<p>Abstract</p> <p>Background</p> <p>During the 2009 H1N1 influenza pandemic, concerns arose about the potential negative effects of mass public gatherings and travel on the course of the pandemic. Better understanding the potential effects of temporal changes in social mixing patterns could help public officials determine if and when to cancel large public gatherings or enforce regional travel restrictions, advisories, or surveillance during an epidemic.</p> <p>Methods</p> <p>We develop a computer simulation model using detailed data from the state of Georgia to explore how various changes in social mixing and contact patterns, representing mass gatherings and holiday traveling, may affect the course of an influenza pandemic. Various scenarios with different combinations of the length of the mass gatherings or traveling period (range: 0.5 to 5 days), the proportion of the population attending the mass gathering events or on travel (range: 1% to 50%), and the initial reproduction numbers R<sub>0 </sub>(1.3, 1.5, 1.8) are explored.</p> <p>Results</p> <p>Mass gatherings that occur within 10 days before the epidemic peak can result in as high as a 10% relative increase in the peak prevalence and the total attack rate, and may have even worse impacts on local communities and travelers' families. Holiday traveling can lead to a second epidemic peak under certain scenarios. Conversely, mass traveling or gatherings may have little effect when occurring much earlier or later than the epidemic peak, e.g., more than 40 days earlier or 20 days later than the peak when the initial R<sub>0 </sub>= 1.5.</p> <p>Conclusions</p> <p>Our results suggest that monitoring, postponing, or cancelling large public gatherings may be warranted close to the epidemic peak but not earlier or later during the epidemic. Influenza activity should also be closely monitored for a potential second peak if holiday traveling occurs when prevalence is high.</p
The United States COVID-19 Forecast Hub dataset
Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial.
BACKGROUND: Staphylococcus aureus bacteraemia is a common cause of severe community-acquired and hospital-acquired infection worldwide. We tested the hypothesis that adjunctive rifampicin would reduce bacteriologically confirmed treatment failure or disease recurrence, or death, by enhancing early S aureus killing, sterilising infected foci and blood faster, and reducing risks of dissemination and metastatic infection. METHODS: In this multicentre, randomised, double-blind, placebo-controlled trial, adults (≥18 years) with S aureus bacteraemia who had received ≤96 h of active antibiotic therapy were recruited from 29 UK hospitals. Patients were randomly assigned (1:1) via a computer-generated sequential randomisation list to receive 2 weeks of adjunctive rifampicin (600 mg or 900 mg per day according to weight, oral or intravenous) versus identical placebo, together with standard antibiotic therapy. Randomisation was stratified by centre. Patients, investigators, and those caring for the patients were masked to group allocation. The primary outcome was time to bacteriologically confirmed treatment failure or disease recurrence, or death (all-cause), from randomisation to 12 weeks, adjudicated by an independent review committee masked to the treatment. Analysis was intention to treat. This trial was registered, number ISRCTN37666216, and is closed to new participants. FINDINGS: Between Dec 10, 2012, and Oct 25, 2016, 758 eligible participants were randomly assigned: 370 to rifampicin and 388 to placebo. 485 (64%) participants had community-acquired S aureus infections, and 132 (17%) had nosocomial S aureus infections. 47 (6%) had meticillin-resistant infections. 301 (40%) participants had an initial deep infection focus. Standard antibiotics were given for 29 (IQR 18-45) days; 619 (82%) participants received flucloxacillin. By week 12, 62 (17%) of participants who received rifampicin versus 71 (18%) who received placebo experienced treatment failure or disease recurrence, or died (absolute risk difference -1·4%, 95% CI -7·0 to 4·3; hazard ratio 0·96, 0·68-1·35, p=0·81). From randomisation to 12 weeks, no evidence of differences in serious (p=0·17) or grade 3-4 (p=0·36) adverse events were observed; however, 63 (17%) participants in the rifampicin group versus 39 (10%) in the placebo group had antibiotic or trial drug-modifying adverse events (p=0·004), and 24 (6%) versus six (2%) had drug interactions (p=0·0005). INTERPRETATION: Adjunctive rifampicin provided no overall benefit over standard antibiotic therapy in adults with S aureus bacteraemia. FUNDING: UK National Institute for Health Research Health Technology Assessment
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …