90 research outputs found
Modeling Ertapenem: The Impact of Body Mass Index on Distribution of the Antibiotic in the Body
Ertapenem is an antibiotic commonly used to treat a broad spectrum of infections and is part of a broader class of antibiotics called carbapenems. Unlike other carbapenems, ertapenem has a longer half-life and thus only has to be administered once a day. Previously, a physiologically-based pharmacokinetic (PBPK) model was developed to investigate the uptake, distribution, and elimination of ertapenem following a single one gram dose in normal height, normal weight males. Due to the absorption properties of ertapenem, the amount of fat in the body can influence how the drug binds, how quickly the drug passes through the body, and thus how effective the drug might be. Thus, we have revised the model so that it is applicable to males and females of differing body mass index (BMI). Simulations were performed to consider the distribution of the antibiotic in males and females with varying body mass indexes. These results could help to determine if there is a need for altered dosing regimens in the future
Osteopontin Inhibits Interleukin-1β-Stimulated Increases in Matrix Metalloproteinase Activity in Adult Rat Cardiac Fibroblasts: Role of Protein Kinase C-ζ
We have shown that osteopontin (OPN), an extracellular matrix protein, plays an important role in post myocardial infarction (MI) remodeling by promoting collagen synthesis and accumulation. Interleukin-1β (IL-1β), increased in the heart following MI, increases matrix metalloproteinase (MMP) activity in cardiac fibroblasts in vitro. Here, we show that OPN alone has no effect on MMP activity or expression. However, it reduces IL-1β-stimulated increases in MMP activity and expression in adult rat cardiac fibroblasts. Pretreatment with bovine serum albumin had no effect on MMP activity or protein content, whereas GRGDS (glycine-arginine-glycine-aspartic acid-serine)- pentapeptide (which interrupts binding of RGD-containing proteins to cell surface integrins) and monoclonal antibody m7E3 (a rat β3 integrins antagonist) inhibited the effects of OPN. Inhibition of PKC using chelerythrine inhibited the activities of both MMP-2 and MMP-9. Stimulation of cells using IL-1β increased phosphorylation and translocation of PKC to membrane fractions, which was inhibited by OPN. OPN inhibited IL-1β-stimulated increases in translocation of PKC-ζ from cytosolic to membrane fractions. Furthermore, the levels of phospho-PKC-ζ were lower in the cytosolic fractions of OPN knock-out mice hearts as compared with wild type 6 days post-MI. Inhibition of PKC-ζ using PKC-ζ pseudosubstrate inhibited IL-1β-stimulated increases in MMP-2 and MMP-9 activities. These observations suggest that OPN, acting via 3 integrins, inhibits IL-1β-stimulated increases in MMP-2 and MMP-9 activity, at least in part, via the involvement of PKC-ζ. Thus, OPN may play a key role in collagen deposition during myocardial remodeling following MI by modulating cytokine-stimulated MMP activity
The Impact of 9/11 on Hours of Work in the United States
The purpose of this paper is to determine whether workers’ commitment to the labor force declined after 9/11, as many popular press accounts at the time suggested it would. The results indicate that any measured decline in hours spent working was the result of economic conditions rather than changes in desired hours of work. Controlling for economic conditions, hours of work after 9/11 actually increased on average compared to before 9/11; no significant change in hours spent working occurred among residents of New York City, however
Neurophysiology
Contains research objectives and summary of research on sixteen research projects.National Institutes of Health (Grant 5 TO1 EY00090-03)National Institutes of Health (Grant 3 RO1 EY01149-03S1)Bell Laboratories (Grant)National Institutes of Health (Grant 5 RO1 NS12307-02)National Institutes of Health (Grant K04 NS00010
Policy Recommendations for Meeting the Grand Challenge to Achieve Equal Opportunity and Justice
This brief was created forSocial Innovation for America’s Renewal, a policy conference organized by the Center for Social Development in collaboration with the American Academy of Social Work & Social Welfare, which is leading theGrand Challenges for Social Work initiative to champion social progress. The conference site includes links to speeches, presentations, and a full list of the policy briefs
Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill
The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of ∼4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using (14)C-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, both of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of (14)C-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)'s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem
Extensions of MADM (Mosaic Analysis with Double Markers) in Mice
Mosaic Analysis with Double Markers (MADM) is a method for generating genetically mosaic mice, in which sibling mutant and wild-type cells are labeled with different fluorescent markers. It is a powerful tool that enables analysis of gene function at the single cell level in vivo. It requires transgenic cassettes to be located between the centromere and the mutation in the gene of interest on the same chromosome. Here we compare procedures for introduction of MADM cassettes into new loci in the mouse genome, and describe new approaches for expanding the utility of MADM. We show that: 1) Targeted homologous recombination outperforms random transgenesis in generation of reliably expressed MADM cassettes, 2) MADM cassettes in new genomic loci need to be validated for biallelic and ubiquitous expression, 3) Recombination between MADM cassettes on different chromosomes can be used to study reciprocal chromosomal deletions/duplications, and 4) MADM can be modified to permit transgene expression by combining it with a binary expression system. The advances described in this study expand current, and enable new and more versatile applications of MADM
Design of a load-balancing architecture for parallel firewalls
Because firewalls can become a potential choke point as network speeds and loads increase, the Navy needs a cost-effective means of increasing data rate through firewalls by placing several machines in parallel and balancing the traffic load among them. Current firewall architectures consisting of multiple machines do not balance load among machines and require that each type of traffic be allocated to a machine dedicated to processing specific protocols. This situation creates a performance bottleneck. This thesis proposes a load-balancing firewall architecture to meet the Navy's needs. It first conducts an architectural analysis of the problem and then presents a high-level system design as a solution. Finally, the thesis provides a detailed system design, targeted for the BSD/OS operating System. The detailed design describes the state transitions, data types and databases, functional interfaces, and threads of execution for a modular layered software architecture. The result of this thesis is a procedural blueprint for implementation of a firewall architecture, from both software and hardware perspectives, that should mitigate the performance bottleneck. The software architecture is easily verifiable due to its modular, layered design; does not affect either the commercial routers or firewall products; and provides an administrative interface for performance tuning.http://archive.org/details/designofloadbala1094513617U.S. Navy (U.S.N.) author.Approved for public release; distribution is unlimited
- …