19 research outputs found

    Water adsorption on vanadium oxide thin films in ambient relative humidity.

    Get PDF
    In this work, ambient pressure x-ray photoelectron spectroscopy (APXPS) is used to study the initial stages of water adsorption on vanadium oxide surfaces. V 2p, O 1s, C 1s, and valence band XPS spectra were collected as a function of relative humidity in a series of isotherm and isobar experiments. Experiments were carried out on two VO2 thin films on TiO2 (100) substrates, prepared with different surface cleaning procedures. Hydroxyl and molecular water surface species were identified, with up to 0.5 ML hydroxide present at the minimum relative humidity, and a consistent molecular water adsorption onset occurring around 0.01% relative humidity. The work function was found to increase with increasing relative humidity, suggesting that surface water and hydroxyl species are oriented with the hydrogen atoms directed away from the surface. Changes in the valence band were also observed as a function of relative humidity. The results were similar to those observed in APXPS experiments on other transition metal oxide surfaces, suggesting that H2O-OH and H2O-H2O surface complex formation plays an important role in the oxide wetting process and water dissociation. Compared to polycrystalline vanadium metal, these vanadium oxide films generate less hydroxide and appear to be more favorable for molecular water adsorption

    Momentum for Catalysis: How Surface Reactions Shape the RuO2 Flat Surface State

    Get PDF
    The active (110) surface of the benchmark oxygen evolution catalyst RuO2 spans a flat-band surface state (FBSS) between the surface projections of its Dirac nodal lines (DNLs) that define the electronic properties of this functional semimetal. Monitoring well-known surface adsorption processes of H2, O2, NO, and CO by in operando angle-resolved photoemission spectroscopy, we selectively modify the oxidation state of individual Ru surface sites and identify the electronic nature of the FBSS: stabilized by bridging oxygen Obr pz, the FBSS disperses along ⟨001⟩ oriented chains of bridging Rubr 4dz2 orbitals, collapses upon Obr removal, yet remains surprisingly unaffected by the oxidation state of the undercoordinated 1f-cus-Ru species. This directly reflects in the ability of RuO2(110) to oxidize CO and H2 along with its inability to oxidize NO, demonstrating the FBSS’s active role in catalytic charge transfer processes at the oxygen bridge sites. Our synergetic approach provides momentum-resolved insights to the interplay of a catalyst’s delocalized electronic band structure and the localized orbitals of its surface reactantsa route toward a microscopic understanding of heterogeneous catalysis

    Nano-engineering of electron correlation in oxide superlattices

    Get PDF
    This Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 license after a 12 month embargo period. The published version can found here: https//dx.doi.org/10.1088/2399-1984/aa8f39Oxide heterostructures and superlattices have attracted a great deal of attention in recent years owing to the rich exotic properties encountered at their interfaces. We focus on the potential of tunable correlated oxides by investigating the spectral function of the prototypical correlated metal SrVO<sub>3</sub>, using soft x-ray absorption spectroscopy (XAS) and resonant inelastic soft x-ray scattering (RIXS) to access both unoccupied and occupied electronic states, respectively. We demonstrate a remarkable level of tunability in the spectral function of SrVO<sub>3</sub> by varying its thickness within the SrVO<sub>3</sub>/SrTiO<sub>3</sub> superlattice, showing that the effects of electron correlation can be tuned from dominating the energy spectrum in a strongly correlated Mott-Hubbard insulator, towards a correlated metal. We show that the effects of dimensionality on the correlated properties of SrVO<sub>3</sub> are augmented by interlayer coupling, yielding a highly flexible correlated oxide that may be readily married with other oxide systems.2018-09-2

    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2

    Full text link
    Observations of the anomalous Hall effect in RuO2_2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2_2 is excluded by symmetry for the N\'eel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the N\'eel vector from the easy-axis towards the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2_2 thin-film samples whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field HcH_{\rm c} \simeq 55 T that was inaccessible in earlier studies, but is consistent with the expected N\'eel-vector reorientation field.Comment: 4 figure

    A soft X-ray spectroscopic perspective of electron localization and transport in tungsten doped bismuth vanadate single crystals

    Get PDF
    Polarization dependent V L-edge XAS spectra showing anisotropy in the electronic band structure of a W:BiVO4 single crystal.</p

    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2

    Get PDF
    Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field

    How Indium Nitride Senses Water.

    No full text
    corecore