57 research outputs found

    Nonsurgical Endodontic Treatment of a Maxillary Central Incisor with Two Separate Roots: A Case Report

    Get PDF
    The success of endodontic therapy requires knowledge of the internal and external dental anatomy and its variations in presentation. This case report involves endodontic treatment of a traumatized maxillary central incisor with two separate roots

    Curing epoxy with ethylenediaminetetraacetic acid (EDTA) surface-functionalized CoxFe3- xO4 magnetic nanoparticles

    Get PDF
    In this work, the bulk and surface composition of Fe3O4 supermagnetic nanoparticles were modified for efficient epoxy curing. The bare, ethylenediaminetetraacetic acid (EDTA) capped, and cobalt (Co)-doped EDTA capped Fe3O4 nanoparticles were synthesized electrochemically. The crystalline structure and phase information, surface capping, morphology and magnetization behavior of nanoparticles were studied by X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM), respectively. A low amount of the prepared nanoparticle (0.1Âżwt.%) was used in preparation of epoxy nanocomposites. Nonisothermal differential scanning calorimetry (DSC) under different heating rates was performed to study the potential of nanoparticles in curing epoxy resin with an aliphatic amine. The heat release data on nanocomposites suggest that EDTA capped Co-doped Fe3O4 considerably improved the curing reaction between epoxy resin and the curing agent. Calculations based on Cure Index approved qualitatively a shift from Poor to Good cure by concurrent lattice and surface modifications of magnetic nanoparticles. It is bielived that the approach used in this work can pave the way to enhance curability of epoxy nanocomposites by the combined modification of bulk and surface of nanoparticlesPostprint (author's final draft

    Nonisothermal Cure Kinetics of Epoxy/Polyvinylpyrrolidone Functionalized Superparamagnetic Nano-Fe3O4 Composites: Effect of Zn and Mn Doping

    No full text
    The effects of the bulk and surface modification of nanoparticles on the cure kinetics of low-filled epoxy nanocomposites containing electrochemically synthesized polyvinylpyrrolidone (PVP) functionalized superparamagnetic iron oxide (PVP-SPIO), Zn-doped PVP-SPIO (Zn-PVP-SPIO), and Mn-doped PVP-SPIO (Mn-PVP-SPIO) were studied using differential scanning calorimetry (DSC) and cure kinetics analyses. Integral and differential isoconversional methods were used to calculate the activation energies (Eα) and consequently propose the appropriate reaction model for the curing reaction under nonisothermal conditions. According to the alteration of Eα versus the fractional extent of conversion, the Eα trend was changed through the partial replacement of Fe2+ sites by the Zn2+ and Mn2+ cations in the general formula of MxFe3-xO4, due to smaller amounts of energy being required for curing by the incorporation of Zn-PVP-SPIO and Mn-PVP-SPIO nanoparticles into the epoxy resin. A good agreement was observed between the theoretical calculation and the observed calorimetric data for the model validation

    Green composites in bone tissue engineering

    No full text
    International audienc
    • 

    corecore