547 research outputs found

    A holistic approach to carbon-enhanced metal-poor stars

    Full text link
    By considering the various CEMP subclasses separately, we try to derive, from the specific signatures imprinted on the abundances, parameters (such as metallicity, mass, temperature, and neutron source) characterizing AGB nucleosynthesis from the specific signatures imprinted on the abundances, and separate them from the impact of thermohaline mixing, first dredge-up, and dilution associated with the mass transfer from the companion.To put CEMP stars in a broad context, we collect abundances for about 180 stars of various metallicities, luminosity classes, and abundance patterns, from our own sample and from literature. First, we show that there are CEMP stars which share the properties of CEMP-s stars and CEMP-no stars (which we call CEMP-low-s stars). We also show that there is a strong correlation between Ba and C abundances in the s-only CEMP stars. This strongly points at the operation of the 13C neutron source in low-mass AGB stars. For the CEMP-rs stars (seemingly enriched with elements from both the s- and r-processes), the correlation of the N abundances with abundances of heavy elements from the 2nd and 3rd s-process peaks bears instead the signature of the 22Ne neutron source. Adding the fact that CEMP-rs stars exhibit O and Mg enhancements, we conclude that extremely hot conditions prevailed during the thermal pulses of the contaminating AGB stars. Finally, we argue that most CEMP-no stars (with no overabundances for the neutron-capture elements) are likely the extremely metal-poor counterparts of CEMP neutron-capture-rich stars. We also show that the C enhancement in CEMP-no stars declines with metallicity at extremely low metallicity ([Fe/H]~< -3.2). This trend is not predicted by any of the current AGB models.Comment: 27 pages, 24 figures, accepted for publication in A&

    Towards an operational use of benthic foraminifera for organic pollution monitoring in open and enclosed marine environments: case histories from the outer shelf off Congo and the Firth of Clyde in Scotland.

    Get PDF
    Foraminifera are among the most abundant protists in marine benthic environments. Because of their short life cycles, high biodiversity and specific ecological requirements of individual species, foraminifera react quickly to environmental disturbance, and can be successfully employed as bio-indicators of environmental change, such as those brought about by anthropogenic pollution. In the last decennia, foraminifera have been increasingly used to monitor pollution in a wide range of marine environments, such as intertidal mudflats impacted by oil spillages, harbours affected by heavy metal pollution, or eutrophicated continental shelves. Our best examples of anthropogenic eutrophication are 1) a drill cutting disposal sites at the outer continental shelf off Congo, where we observed a zonation of foraminiferal faunas in the 750 m around the discharge point. In the immediate vicinity of the discharge points (within 70 m), faunas are characterised by low foraminiferal densities. Faunas between 70 m and 250 m of the disposal sites have very high foraminiferal densities, with high percentages of opportunistic taxa such as B. aculeata and B. marginata. Between 250 and 750 m, foraminiferal densities decrease, and the percentages of opportunistic species are lower; 2) a sewage sludge disposal on the sea floor in the Firth of Clyde (Scotland) where we used benthic foraminifera and macrofaunal/meiofaunal assemblages to evaluate the impact. These two communities present a very similar distributional pattern around the disposal site. In its immediate vicinity, both groups show impoverished faunas composed exclusively of species tolerant to strong oxygen depletion. This area is surrounded by an aureole of high density faunas dominated by opportunistic species. Still farther away, faunal density decreases, and equilibrium taxa gradually replace opportunistic species. At about 3 Km of the disposal site, both foraminiferal and macro-/meiofaunal taxa become comparable to those found at the reference station. We used these data to develop a quantitative pollution index, values of which are strongly correlated with the distance to the disposal site. This foraminiferal index offers the possibility to quantify the impact of anthropogenic eutrophication in marine environments, but its validity must be tested in wider range of naturally and anthropogenetically impacted marine environments.Foraminifera are among the most abundant protists in marine benthic environments. Because of their short life cycles, high biodiversity and specific ecological requirements of individual species, foraminifera react quickly to environmental disturbance, and can be successfully employed as bio-indicators of environmental change, such as those brought about by anthropogenic pollution. In the last decennia, foraminifera have been increasingly used to monitor pollution in a wide range of marine environments, such as intertidal mudflats impacted by oil spillages, harbours affected by heavy metal pollution, or eutrophicated continental shelves. Our best examples of anthropogenic eutrophication are 1) a drill cutting disposal sites at the outer continental shelf off Congo, where we observed a zonation of foraminiferal faunas in the 750 m around the discharge point. In the immediate vicinity of the discharge points (within 70 m), faunas are characterised by low foraminiferal densities. Faunas between 70 m and 250 m of the disposal sites have very high foraminiferal densities, with high percentages of opportunistic taxa such as B. aculeata and B. marginata. Between 250 and 750 m, foraminiferal densities decrease, and the percentages of opportunistic species are lower; 2) a sewage sludge disposal on the sea floor in the Firth of Clyde (Scotland) where we used benthic foraminifera and macrofaunal/meiofaunal assemblages to evaluate the impact. These two communities present a very similar distributional pattern around the disposal site. In its immediate vicinity, both groups show impoverished faunas composed exclusively of species tolerant to strong oxygen depletion. This area is surrounded by an aureole of high density faunas dominated by opportunistic species. Still farther away, faunal density decreases, and equilibrium taxa gradually replace opportunistic species. At about 3 Km of the disposal site, both foraminiferal and macro-/meiofaunal taxa become comparable to those found at the reference station. We used these data to develop a quantitative pollution index, values of which are strongly correlated with the distance to the disposal site. This foraminiferal index offers the possibility to quantify the impact of anthropogenic eutrophication in marine environments, but its validity must be tested in wider range of naturally and anthropogenetically impacted marine environments

    Benthic foraminifera as bio-indicators of drill cutting disposal in tropical east Atlantic outer shelf environments

    Get PDF
    We present a study of benthic foraminiferal faunas from the outer continental shelf off Congo (tropical West Africa), with the aim to determine the impact of the discharge of oily drill cuttings on the sea floor environment, to judge the regenerating capacity of the benthic ecosystem, and to investigate the possibility to develop an environmental monitoring method for open marine continental shelf environments, based on benthic foraminifera. We studied the spatial distribution and microhabitats of living and dead foraminiferal faunas, sampled in April 2003, 4 years after the end of disposal activities, in the upper 3 cm of the sediment at 9 stations (about 180 m depth) offshore Congo, that were subject to various degrees of pollution by oily cuttings from 1993 until 1999. Our results describe a zonation of foraminiferal faunas in the 750 m around the former disposal sites. At the immediate vicinity of the discharge points (within 70 m), faunas are characterized by low foraminiferal densities. Faunas between 70 m and 250 m of the disposal sites have very high foraminiferal densities, with high percentages (about 80%) of opportunistic taxa such as Bulimina aculeata, Bulimina marginata, Textularia sagittula, Trifarina bradyi and Bolivina spp. Between 250 and 750 m from the disposal site, foraminiferal densities decrease, and the percentages of opportunistic species are lower (40–60% of indicator species). These results show that 4 years after the cessation of oily cutting disposal, strong environmental impact is limited to the 250 m around the disposal sites. We used these data to develop a quantitative pollution index, values of which are strongly correlated to distance to the disposal site. This foraminiferal index offers the possibility to quantify the impact of anthropogenic eutrophication in continental shelf environments, but its validity must be tested in other continental shelf environments

    Recent turbidite deposition in the eastern Atlantic: Early diagenesis and biotic recovery

    Get PDF
    An interface core taken in Capbreton canyon shows a succession of sedimentary facies interpreted as classical Bouma turbiditic sequences. Activities of 234Th and 210Pb suggest that the deposition of the most recent turbidite was triggered by the violent storm that affected the Atlantic coast of southern France on the 27th of December 1999, about four months before the sampling of the core. This turbidite allows us to study the ongoing diagenesis of the new sediment layer and of the previous sediment-water interface, which has been buried and only slightly eroded. A study of benthic foraminiferal populations informs us about the rate of benthic ecosystem recovery after such a major ecosystem disturbance event. The composition of the benthic foraminiferal fauna suggests that the benthic ecosystem in Capbreton canyon remains in an early stage of colonization. The rare agglutinant taxon Technitella melo appears to be the first colonizing species. It is suggested that Technitella melo is advantaged by the food-impoverished conditions in the days following turbidite deposition. Almost all of the turbidite layer and the previous oxic sediment-water interface contain reduced dissolved metal species and were anoxic. The buried interface contains Fe- and Mn-oxides inherited from its recent oxic past. The reduction of manganese oxides was in progress at the time of core collection. The reduced Mn remained trapped in the sediment as Mn-containing carbonates. Iron-oxides did not undergo significant reductive dissolution. The top of the newly deposited turbidite formed an oxic layer, which was rapidly enriched in metal-oxides. The enrichment of manganese oxides was mostly due to the oxidation of dissolved Mn2+, which diffused from below. The enrichment of iron oxides is explained both by the oxidation of the upward flux of dissolved Fe2+, and by the input of detrital iron oxide after, or as a result of the turbidite deposition

    Masses of the components of SB2 binaries observed with Gaia. II. Masses derived from PIONIER interferometric observations for Gaia validation

    Full text link
    In anticipation of the Gaia astrometric mission, a sample of spectroscopic binaries is being observed since 2010 with the Sophie spectrograph at the Haute--Provence Observatory. Our aim is to derive the orbital elements of double-lined spectroscopic binaries (SB2s) with an accuracy sufficient to finally obtain the masses of the components with relative errors as small as 1 % when combined with Gaia astrometric measurements. In order to validate the masses derived from Gaia, interferometric observations are obtained for three SB2s in our sample with F-K components: HIP 14157, HIP 20601 and HIP 117186. The masses of the six stellar components are derived. Due to its edge-on orientation, HIP 14157 is probably an eclipsing binary. We note that almost all the derived masses are a few percent larger than the expectations from the standard spectral-type-mass calibration and mass-luminosity relation. Our calculation also leads to accurate parallaxes for the three binaries, and the Hipparcos parallaxes are confirmed.Comment: 10 pages, 3 figures, accepted by MNRA

    Benthic foraminifera as bio-indicators of eutrophicated environments

    Get PDF
    Foraminifera are among the most abundant protists in marine benthic environments (Murray, 1991). Because of their short life cycles, high biodiversity and specific ecological requirements of individual species, foraminifera react quickly to environmental disturbance, and can be successfully employed as bio-indicators of environmental change, such as those brought about by anthropogenic pollution (as defined by Kramer and Botterweg, 1991). Foraminiferal assemblages are easy to collect; foraminifera are commonly abundant, providing a highly reliable database for statistical analysis, even when only small sample volumes are available. Furthermore, many foraminiferal taxa secrete a carbonate shell, and leave an excellent fossil record, that may be used to characterise baseline conditions, and to reconstruct the state of the ecosystem prior to sampling. Studies of the effects of pollution on benthic foraminiferal assemblages, and their possible use as pollution indicators were initiated in the early 1960’s by Resig (1960) and Watkins (1961). In the last decennia, foraminifera have been increasingly used to monitor pollution in a wide range of marine environments, such as intertidal mudflats impacted by oil spillages (Morvan et al., 2004), harbours affected by heavy metal pollution (Armynot Du Châtelet et al., 2004), or eutrophicated continental shelves (Sharifi et al., 1991; Yanko and Flexer, 1991). The goal of our study is to compare different types of eutrophicated environments, under anthropogenic or natural conditions:  we used benthic foraminifera as bio-indicators of anthropogenic eutrophication caused by drill cutting discharges (Congo and Gabon), by sewage sludge (Firth of Clyde; Scotland) and by fish farms (Loch Etive; Scotland) and compared the faunal patterns with those observed in the Rhone prodelta, en environment characterised by strong natural eutrophication due to  important continental nutrient input

    s-Process Nucleosynthesis in Carbon Stars

    Get PDF
    We present the first detailed and homogeneous analysis of the s-element content in Galactic carbon stars of N-type. Abundances of Sr,Y, Zr (low-mass s-elements, or ls) and of Ba, La, Nd, Sm and Ce (high-mass s-elements, hs) are derived using the spectral synthesis technique from high-resolution spectra. The N-stars analyzed are of nearly solar metallicity and show moderate s-element enhancements, similar to those found in S stars, but smaller than those found in the only previous similar study (Utsumi 1985), and also smaller than those found in supergiant post-AGB stars. This is in agreement with the present understanding of the envelope s-element enrichment in giant stars, which is increasing along the spectral sequence M-->MS-->S-->SC-->C during the AGB phase. We compare the observational data with recent ss-process nucleosynthesis models for different metallicities and stellar masses. Good agreement is obtained between low mass AGB star models (M < 3 M_o) and s-elements observations. In low mass AGB stars, the 13C(alpha, n)16O reaction is the main source of neutrons for the s-process; a moderate spread, however, must exist in the abundance of 13C that is burnt in different stars. By combining information deriving from the detection of Tc, the infrared colours and the theoretical relations between stellar mass, metallicity and the final C/O ratio, we conclude that most (or maybe all) of the N-stars studied in this work are intrinsic, thermally-pulsing AGB stars; their abundances are the consequence of the operation of third dredge-up and are not to be ascribed to mass transfer in binary systems.Comment: 31 pages, 10 figures, 6 tables. Accepted in Ap

    The VLTI/MIDI view on the inner mass loss of evolved stars from the Herschel MESS sample

    Get PDF
    The mass-loss process from evolved stars is a key ingredient for our understanding of many fields of astrophysics, including stellar evolution and the chemical enrichment of the interstellar medium via stellar yields. One the main unsolved questions is the geometry of the mass-loss process. Taking advantage of the results from the Herschel Mass loss of Evolved StarS (MESS) programme, we initiated a coordinated effort to characterise the geometry of mass loss from evolved red giants at various spatial scales. For this purpose we used the MID-infrared interferometric Instrument (MIDI) to resolve the inner envelope of 14 asymptotic giant branch stars (AGBs) in the MESS sample. In this contribution we present an overview of the interferometric data collected within the frame of our Large Programme, and we also add archive data for completeness. We studied the geometry of the inner atmosphere by comparing the observations with predictions from different geometric models. Asymmetries are detected for five O-rich and S-type, suggesting that asymmetries in the N band are more common among stars with such chemistry. We speculate that this fact is related to the characteristics of the dust grains. Except for one star, no interferometric variability is detected, i.e. the changes in size of the shells of non-mira stars correspond to changes of the visibility of less than 10%. The observed spectral variability confirms previous findings from the literature. The detection of dust in our sample follows the location of the AGBs in the IRAS colour-colour diagram: more dust is detected around oxygen-rich stars in region II and in the carbon stars in region VII. The SiC dust feature does not appear in the visibility spectrum of UAnt and SSct, which are two carbon stars with detached shells. This finding has implications for the theory of SiC dust formation.Comment: 43 pages, 31 figures; accepted for publication in Astronomy & Astrophysics. Abstract shortened for compilation reasons. Metadata correcte
    • …
    corecore