2 research outputs found

    DataSheet_1_Analysis of reproductive traits reveals complex population dynamics on a small geographical scale in Atlantic herring.docx

    Get PDF
    Atlantic herring (Clupea harengus) has a complex population structure and displays a variety of reproductive strategies. Differences in reproductive strategies among herring populations are linked to their time of spawning, as well as to their reproductive investment which can be an indicator for migratory vs. stationary behavior. These differences are reflected in the number of oocytes (fecundity) and the size of the oocytes prior spawning. We studied potential mixing of herring with different reproductive strategies during the spring spawning season on a coastal spawning ground. It has been hypothesized that both spring and autumn spawning herring co-occur on this specific spawning ground. Therefore, we investigated the reproductive traits oocyte size, fecundity, fertilization success as well as length of the hatching larvae during the spring spawning season from February to April. We used a set of 11 single nucleotide polymorphism markers (SNPs), which are associated with spawning season, to genetically identify autumn and spring spawning herring. Reproductive traits were investigated separately within these genetically distinct spawning types. Furthermore, we used multivariate analyses to identify groups with potentially different reproductive strategies within the genetic spring spawners. Our results indicate that mixing between ripe spring and autumn spawners occurs on the spawning ground during spring, with ripe autumn spawners being generally smaller but having larger oocytes than spring spawners. Within spring spawners, we found large variability in reproductive traits. A following multivariate cluster analysis indicated two groups with different reproductive investment. Comparisons with other herring populations along the Norwegian coastline suggest that the high variability can be explained by the co-occurrence of groups with different reproductive investments potentially resulting from stationary or migratory behavior. Fertilization success and the length of the hatching larvae decreased with progression of the spawning season, with strong inter-individual variation, supporting our findings. Incorporating such complex population dynamics into management strategies of this species will be essential to build its future population resilience.</p

    Table1_Salinity change evokes stress and immune responses in Atlantic salmon with microalgae showing limited potential for dietary mitigation.docx

    No full text
    Smoltification was found to impact both immune and stress responses of farmed Atlantic salmon (Salmo salar), but little is known about how salinity change affects salmon months after completed smoltification. Here, we examined (1) the effect of salinity change from brackish water to seawater on the stress and immune responses in Atlantic salmon and (2) evaluated if functional diets enriched with microalgae can mitigate stress- and immune-related changes. Groups of Atlantic salmon were fed for 8 weeks with different microalgae-enriched diets in brackish water and were then transferred into seawater. Samples of the head kidney, gill, liver and plasma were taken before seawater transfer (SWT), 20 h after SWT, and 2 weeks after SWT for gene-expression analysis, plasma biochemistry and protein quantification. The salmon showed full osmoregulatory ability upon transfer to seawater reflected by high nkaα1b levels in the gill and tight plasma ion regulation. In the gill, one-third of 44 investigated genes were reduced at either 20 h or 2 weeks in seawater, including genes involved in cytokine signaling (il1b) and antiviral defense (isg15, rsad2, ifit5). In contrast, an acute response after 20 h in SW was apparent in the head kidney reflected by increased plasma stress indicators and induced expression of genes involved in acute-phase response (drtp1), antimicrobial defense (camp) and stress response (hspa5). However, after 2 weeks in seawater, the expression of antiviral genes (isg15, rsad2, znfx1) was reduced in the head kidney. Few genes (camp, clra, c1ql2) in the gill were downregulated by a diet with 8% inclusion of Athrospira platensis. The results of the present study indicate that salinity change months after smoltification evokes molecular stress- and immune responses in Atlantic salmon. However, microalgae-enriched functional diets seem to have only limited potential to mitigate the related changes.</p
    corecore