424 research outputs found

    Visible Light-Driven Water Oxidation Catalyzed by Ruthenium Complexes

    Get PDF
    A shift in energy dependence from fossil fuels to sustainable and carbon-neutral alternatives is a daunting challenge that faces the human society. Light harvesting for the production of solar fuels has been extensively investigated as an attractive approach to clean and abundant energy. An essential component in solar energy conversion schemes is a catalyst for water oxidation. Ruthenium-based catalysts have received significant attention due to their ability to efficiently mediate the oxidation of water. In this context, the design of robust catalysts capable of driving water oxidation at low overpotential is a key challenge for realizing efficient visible light-driven water splitting. Herein, recent progress in the development within this field is presented with a focus on homogeneous ruthenium-based systems and surface-immobilized ruthenium assemblies for photo-induced oxidation of water

    Long-lived space observatories for astronomy and astrophysics

    Get PDF
    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about 1.3billion(1984dollars)tobuildandisestimatedtorequire1.3 billion (1984 dollars) to build and is estimated to require 160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given

    The accretion origin of the Milky Way's stellar halo

    Get PDF
    We have used data from the Sloan Digital Sky Survey (SDSS) Data Release 5 to explore the overall structure and substructure of the stellar halo of the Milky Way using about 4 million color-selected main sequence turn-off stars. We fit oblate and triaxial broken power-law models to the data, and found a `best-fit' oblateness of the stellar halo 0.5<c/a<0.8, and halo stellar masses between Galactocentric radii of 1 and 40kpc of (3.7+/-1.2)x10^8 M_sun. The density profile of the stellar halo is approximately r^{-3}; it is possible that the power law slope is shallower inside 20kpc and steeper outside that radius. Yet, we found that all smooth and symmetric models were very poor fits to the distribution of stellar halo stars because the data exhibit a great deal of spatial substructure. We quantified deviations from a smooth oblate/triaxial model using the RMS of the data around the model profile on scales >~100pc, after accounting for the (known) contribution of Poisson uncertainties. The fractional RMS deviation of the actual stellar distribution from any smooth, parameterized halo model is >~40%: hence, the stellar halo is highly structured. We compared the observations with simulations of galactic stellar halos formed entirely from the accretion of satellites in a cosmological context by analysing the simulations in the same way as the data. While the masses, overall profiles, and degree of substructure in the simulated stellar halos show considerable scatter, the properties and degree of substructure in the Milky Way's halo match well the properties of a `typical' stellar halo built exclusively out of the debris from disrupted satellite galaxies. Our results therefore point towards a picture in which an important fraction of the Milky Way's stellar halo has been accreted from satellite galaxies.Comment: Submitted to the Astrophysical Journal. 14 pages; 11 figure

    SDSS J092455.87+021924.9: an Interesting Gravitationally Lensed Quasar from the Sloan Digital Sky Survey

    Full text link
    We report the discovery of a new gravitationally lensed quasar from the Sloan Digital Sky Survey, SDSS J092455.87+021924.9 (SDSS J0924+0219). This object was selected from among known SDSS quasars by an algorithm that was designed to select another known SDSS lensed quasar (SDSS 1226-0006A,B). Five separate components, three of which are unresolved, are identified in photometric follow-up observations obtained with the Magellan Consortium's 6.5m Walter Baade telescope at Las Campanas Observatory. Two of the unresolved components (designated A and B) are confirmed to be quasars with z=1.524; the velocity difference is less than 100 km sec^{-1} according to spectra taken with the W. M. Keck Observatory's Keck II telescope on Mauna Kea. A third stellar component, designated C, has the colors of a quasar with redshift similar to components A and B. The maximum separation of the point sources is 1.78". The other two sources, designated G and D, are resolved. Component G appears to be the best candidate for the lensing galaxy. Although component D is near the expected position of the fourth lensed component in a four image lens system, its properties are not consistent with being the image of a quasar at z~1.5. Nevertheless, the identical redshifts of components A and B and the presence of component C strongly suggest that this object is a gravitational lens. Our observations support the idea that a foreground object reddens the fourth lensed component and that another unmodeled effect (such as micro- or milli-lensing) demagnificates it, but we cannot rule out the possibility that SDSS0924+0219 is an example of the relatively rare class of ``three component'' lens systems.Comment: 24 pages, 6 figures, accepted by A

    Quantifying Kinematic Substructure in the Milky Way's Stellar Halo

    Get PDF
    We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative "close pair distribution" (CPD) as a statistic in the 4-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock-observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at rgc<20\rm r_{gc} < 20 kpc.Comment: 29 page, 10 figures, 1 table; accepted by APJ; for related article by another group see arXiv:1011.192

    Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set

    Get PDF
    The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets

    On gravitational waves emitted by an ensemble of rotating neutron stars

    Get PDF
    We study the possibility to detect the gravitational wave background generated by all the neutron stars in the Galaxy with only one gravitational wave interferometric detector. The proposed strategy consists in squaring the detector's output and searching for a sidereal modulation. The shape of the squared signal is computed for a disk and a halo distribution of neutron stars. The required noise stability of the interferometric detector is discussed. We argue that a possible population of old neutron stars, originating from a high stellar formation rate at the birth of the Galaxy and not emitting as radio pulsars, could be detected by the proposed technique in the low frequency range of interferometric experiments.Comment: 14 pages, 2 PostScript figures, RevTeX, accepted for publication in Physical Review
    corecore