737 research outputs found

    Validation of highly reliable, real-time knowledge-based systems

    Get PDF
    Knowledge-based systems have the potential to greatly increase the capabilities of future aircraft and spacecraft and to significantly reduce support manpower needed for the space station and other space missions. However, a credible validation methodology must be developed before knowledge-based systems can be used for life- or mission-critical applications. Experience with conventional software has shown that the use of good software engineering techniques and static analysis tools can greatly reduce the time needed for testing and simulation of a system. Since exhaustive testing is infeasible, reliability must be built into the software during the design and implementation phases. Unfortunately, many of the software engineering techniques and tools used for conventional software are of little use in the development of knowledge-based systems. Therefore, research at Langley is focused on developing a set of guidelines, methods, and prototype validation tools for building highly reliable, knowledge-based systems. The use of a comprehensive methodology for building highly reliable, knowledge-based systems should significantly decrease the time needed for testing and simulation. A proven record of delivering reliable systems at the beginning of the highly visible testing and simulation phases is crucial to the acceptance of knowledge-based systems in critical applications

    A strategy for automatically generating programs in the lucid programming language

    Get PDF
    A strategy for automatically generating and verifying simple computer programs is described. The programs are specified by a precondition and a postcondition in predicate calculus. The programs generated are in the Lucid programming language, a high-level, data-flow language known for its attractive mathematical properties and ease of program verification. The Lucid programming is described, and the automatic program generation strategy is described and applied to several example problems

    Evaluation of fault-tolerant parallel-processor architectures over long space missions

    Get PDF
    The impact of a five year space mission environment on fault-tolerant parallel processor architectures is examined. The target application is a Strategic Defense Initiative (SDI) satellite requiring 256 parallel processors to provide the computation throughput. The reliability requirements are that the system still be operational after five years with .99 probability and that the probability of system failure during one-half hour of full operation be less than 10(-7). The fault tolerance features an architecture must possess to meet these reliability requirements are presented, many potential architectures are briefly evaluated, and one candidate architecture, the Charles Stark Draper Laboratory's Fault-Tolerant Parallel Processor (FTPP) is evaluated in detail. A methodology for designing a preliminary system configuration to meet the reliability and performance requirements of the mission is then presented and demonstrated by designing an FTPP configuration

    The art of fault-tolerant system reliability modeling

    Get PDF
    A step-by-step tutorial of the methods and tools used for the reliability analysis of fault-tolerant systems is presented. Emphasis is on the representation of architectural features in mathematical models. Details of the mathematical solution of complex reliability models are not presented. Instead the use of several recently developed computer programs--SURE, ASSIST, STEM, PAWS--which automate the generation and solution of these models is described

    The Second NASA Formal Methods Workshop 1992

    Get PDF
    The primary goal of the workshop was to bring together formal methods researchers and aerospace industry engineers to investigate new opportunities for applying formal methods to aerospace problems. The first part of the workshop was tutorial in nature. The second part of the workshop explored the potential of formal methods to address current aerospace design and verification problems. The third part of the workshop involved on-line demonstrations of state-of-the-art formal verification tools. Also, a detailed survey was filled in by the attendees; the results of the survey are compiled

    Documentation of the current fault detection, isolation and reconfiguration software of the AIPS fault-tolerant processor

    Get PDF
    Documentation is presented of the December 1986 version of the ADA code for the fault detection, isolation, and reconfiguration (FDIR) functions of the Advanced Information processing System (AIPS) Fault-Tolerant Processor (FTP). Because the FTP is still under development and the software is constantly undergoing changes, this should not be considered final documentation of the FDIR software of the FTP

    Violence, suicide, and all-cause mortality

    Get PDF

    Supporting Your Researchers

    Get PDF
    Article by subject librarians at the University of East London describing the organisation and outcome of a Research Support Day held in order to inform academic staff of new resources and training opportunities (especially in new databases and other electronic resources such as Endnote) and find out their current training needs. The article contains practical tips for librarians on how to organise a similar event and feed back from attendees

    ASSIST internals reference manual

    Get PDF
    The Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST) program was developed at NASA LaRC in order to analyze the reliability of virtually any fault-tolerant system. A user manual was developed to detail its use. Certain technical specifics are of no concern to the end user, yet are of importance to those who must maintain and/or verify the correctness of the tool. This document takes a detailed look into these technical issues

    TOTAL user manual

    Get PDF
    Semi-Markov models can be used to analyze the reliability of virtually any fault-tolerant system. However, the process of delineating all of the states and transitions in the model of a complex system can be devastatingly tedious and error-prone. Even with tools such as the Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST), the user must describe a system by specifying the rules governing the behavior of the system in order to generate the model. With the Table Oriented Translator to the ASSIST Language (TOTAL), the user can specify the components of a typical system and their attributes in the form of a table. The conditions that lead to system failure are also listed in a tabular form. The user can also abstractly specify dependencies with causes and effects. The level of information required is appropriate for system designers with little or no background in the details of reliability calculations. A menu-driven interface guides the user through the system description process, and the program updates the tables as new information is entered. The TOTAL program automatically generates an ASSIST input description to match the system description
    corecore