
NASA Technical Memorandum 89154

DOCUMENTATION OF THE CURRENT
FAULT DETECTION, ISOLATION, AND
RECONFIGURATION SOFTWARE OF THE
AIPS FAULT-TOLERANT PROCESSOR

David T. Lanning
Allen W. Shepard
Sally C. Johnson

(NASA-T_-Pg154) DI]CUM_HT_TTON nF THE

CURRENT FAULT L)FIECTInN, ISOLATION ANO

RECONFIGU_ATInN bOFT_ARE OF THE AIP_

FAULI-T_LFP, ArwT P_,OCFSSOR (NAqA) 31 o

CSLL

N90-i0002

Unclas

OiB G3/bl 0737i3_

August 1987

Date for general release August 3l, I989

N/LqA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

https://ntrs.nasa.gov/search.jsp?R=19900001286 2020-03-20T01:04:00+00:00Z

TAB_ OF CCI_TS

INTIK)DL_'_ION ... 1

THE _ ARCHITECTURE .. 2

FAULT DETECTION .. 5

Package TEST ... 5

Package ERROR LATCH .. 8

Package CLOCK LATCH .. 9

Package FDIR ... 10

ISOLATION .. 13

Package C(_FIG ... 13

Package MEMORY UTILITIES 14

RECONFIGURATION .. 15

Package TRANS IE2_T .. 15

Package SYNC UTILITIES ... 16

Package SYNC ... 17

HAR[YNARE INTERFACE ... 20

Package EXCHANGE ... 20

ERROR LOGGING ROUTINES ... 21

Package RECONFIG LOG ... 21

Package RECORD FDIR ERRORS 21

Package RECORD RECONFIGS 21

Package FDIR ERROR LOG ... 22

Package LATEST FDIR ERRORS 22

Package EXCEPTION LOG .. 22

CONCLUDING REMARKS ... 24

APPENDIX A. INDEX OF PROCEDURES AND FUNCTIONS 25

APPE2qDIX B. FDIR PACKAGE DEPE'_]DE,_CIES 27

APPENDIX C. FLOWCHART OF PROCEDURE FAST 28

INTRODUCTION

This report contains documentation of the December 1986 version of the Ada

code for the fault detection, isolation, and reconfiguration (FDIR) functions

of the Advanced Information Processing System (AIPS) Fault-Tolerant Processor

(FTP). The FTP is a major component of the AIPS system being developed by the

Charles Stark Draper Laboratory, Inc for NASA. This documentation was

generated to aid in determining the current status of the FDIR software and to

reveal in detail how the FTP FDIR functions are implemented. Because the FTP

is still under development and the software is constantly undergoing changes,

this should not be considered final documentation of the FDIR software of the

FTP. The documentation was done by two Old Dominion University Students, David

T. Lanning and Allen W. Shepard.

The FDIR routines are divided into "fast" FDIR functions and "slow" FDIR

functions. The fast FDIR routines are purely for fault detection. The slow

FDIR routines, which take longer to execute, hence the name "slow", are

executed whenever a fault is detected. These routines isolate the detected

fault and reconfigure the system to remove the failed processor. There are

also slow FDIR routines for reconfiguring the system to bring back in a

processor after it has been repaired or has recovered from a transient fault.

The FDIR software was originally written in the C language, then was translated

to Ada and modified by Gregory Greeley. Some of the functions are written in

Motorola 68000 assembly language to facilitate bit-manipulations of variables

used for writing to and reading from memory-mapped error latches.

The hardware architecture of the FTP is briefly described, then the

software routines for the fault detection, isolation, and reconfiguration

functions are documented, followed by the hardware interface and error logging

routines. Appendix A is an index of the FDIR routines listing where each

routine is discussed in this report. Appendix B is chart of the package

dependencies.

_ ARC}IITE_

The physical architecture of the FTP hardware is not as significant to the

implementation of the software as is the software's view of the hardware, or

the "virtual hardware". In the FDIR software, the triplex redundancy is

transparent to each channel -- each channel views itself as running alone. All

co_mjnication between channels is handled via an "exchange register". Each of

the three channels has one such exchange register (see figure i). Each channel

views the exchange register as being his alone, not as connected to the other

channels through the voting hardware. The exchange register is viewed by the

channel as a magic box, into which is put information, and out of which comes

magically corrected information. Behind the exchange register is a large

network of communication lines and voting hardware, as shown in figure 2. The

network is redundant to provide fault tolerance, so that channel-to-channel

communication can continue even in the event of a communication line failure.

The communication network also provides partial error isolation. Recognizable

patterns present in the receivers are used to help isolate the origin of

hardware faults.

vixii

- I DPM , I SHARED MEMORY

CP
MM

I

lOP
MM

i

I
CP

DPM

EX

IOP

lOS

MM

Computational Processor

Dual-Port Memory

Data Exchange

Input/Output Processor

Input/Output Sequencer

Mass Memory

Figure i. Hardware configuration of a single channel.

3

A B

Transmittere

Interstages

I
Receivers

Figure 2. Interprocessor communication.

FAULT DETECTION

The routines responsible for detecting faults are divided into four

packages: TEST, ERROR_LATCH, CLOCK_LATCH, and FDIR. Package TEST is the only

fault detection package not constantly active seeking faults. TEST (as of now)

is designed to be called during system start-up and disabled afterwards.

Packages ERROR_LATCH and CLOCK_LATCH manipulate the hardware error flags,

informing the FDIR software of errors detected by hardware. Package FDIR is

the main fault detection package, driving the software error detection routines

and handling all errors indicated by hardware latches.

Package TEST

OVERVIEW: This package contains the functions to correct RAM and check RAM

and ROM. Calls are made to the FDIR ERROR LOG package to record errors. There

are two functions for testing the voting hardware, but they have been commented
out.

The test part of the FTP has four functions. It tests the CPU, I/O handler

and voter, RAM and ROM for errors. All the functions run in the lowest

priority task rate group, whenever the CPU has free time. The test functions

are designed to catch latent faults before they build up and produce multiple
coincident bad answers.

1 PROCEDURE:

i) MISCOMPARE insures that the voters, critical to finding these errors,

are operating correctly. The function is given good data to send to
the voters to make sure none of the bits are stuck. This procedure

is commented out. It is not used.

STEP BY STEP:

i) The channels transmit the integer they were given to each other.

They vote, and the voted value is saved.

2) Each channel's transmitted value is compared to the voted value.

If they agree then error flag is set to false and the procedure
terminates.

3) If a channel does not have the voted value, but all the channels

have their channel values, then the error flag is set to false and

the procedure terminates. The channel value is an integer flag

marking that something succeeded. No indication is given as to

how the value got there or what it means. It is not explained how

the channel values might get into the channels.

4) If a channel fails the first two tests but has the value called

"connect" then the error flag is set to false and the procedure

terminates. It is not explained how "connect" might get into the
channels.

5) If the channels fail the first three tests then it is assumed
there must be a fault in one of the channels.
a) The value channel A transmitted is compared against the voted

value. If they are unequal then A is the bad channel. The

channel id is set to A, the error flag is set to true and the

procedure terminates.

b) The same thing is repeated for channel B.

c) Channel C is assumed to be the bad channel if A and B are good.

The channel id is set to C, the error flag is set to true and

the procedu?e terminates.

1 VISIBLE FUNCTION:

i) SYSTEM TEST, which is the driver, returns a reconfiguration flag.

6 LOCAL FUNCTIONS:

i) RAM PATTERN makes sure memory is working, that each bit can hold

eitSer a zero or a one. It is given a start and end address that

defines a block of memory to be checked. Two different patterns are
written to each word in memory and tested. The original contents of

each memoryword are restored after the test.

STEP BY STEP:

i) Starts on the first even word boundary.

2) Memory Utilities Package.TEST LOCATION is called twice to write

two different patterns to eac_word. The memory location is then

read to insure the pattern was stored correctly. The previous
contents of each word is restored after the test. TEST LOCATION

disables interrupts from the time the memory word is saved until

it is restored.

3) If the patterns can be written in memory then the test is good,

else the test flag is set to bad.
4) The three channels then tell each other how their tests went. If a

test was bad and the channel is active then:

a) The reconfigure flag is set to remove that channel.
B) RECORD FDiR ERRORS.REPORT ERROR is called to make the log

entry.--The time, channel and location are recorded.

c) The function terminates, returning a reconfiguration flag to

remove that channel.

5) If the channels test good then the next memory word is tested.

Steps two through five are repeated until the last word in the
block is checked.

6) A good configuration flag is returned if all the memory locations

checked are good.

2) BAD TEST is a simple function that is given a channel's ID and a

syst--em ID and builds a reconfiguration variable. The reconfiguration
variable is returned.

3) GET SUM is passed the start and ending addresses so it can sum a

block of memory locations. It returns the sum total of the memory it

checked. The function can be interrupted.

4) ROM SUM tests the ROM by adding up all the ones in the memory segment

it is given and voting on the result. Since all three processors are
doing this, one ROMis simply comparedagainst the others. One fault
will be found but two faults could slip by unnoticed, e.g. a one and
a zero switched. All channels not in the configuration are kept from
voting.

STEP BY STEP:

i) GET SUM is called to sum up the rows in memory from the starting

address to the ending address GET SUM is given. The result is
saved in local sum.

2) The channels tKen vote on the value in local sum.

3) The voted sum is recorded and put in a variaSle voted sum.

4) Each channel, A then B then C, transmits its value of-local sum

and compares the transmitted local sums against the voted sum.

5) If a channel's local sum does not equal the voted sum and-it is
still active then ba_ test is called.

a) Bad test is a loca]_ procedure that sets the reconfigure flag to

remove a particular channel.

b) RECORD FDIR ERRORS.REPORT ERROR is called to log the time and
channel[ID that failed. -

c) The reconfiguration flag is returned and the function
terminates.

6) If all the ROMs checked out okay, then a good reconfiguration flag
is returned.

The last two functions have been commented out:

5) RAM SCRUB does what ROM SUM does plus RAM SCRUB removes bad channels.
It makes sure the diffe?ent channels have-the same sum of l's in

memory. It does not make sure they are in the same place though, so a

double failure might slip by.

STEP BY STEP:

i) It is given a start and ending memory location. For each word in

memory:

2) The word is read and put in local result.
3) The value of local result is vote_ on and saved in voted value.

4) MISCOMPARE is calle-d to use local result and voted value-to test
the channels.

5) If MISCOMPARE signals a problem then:

a) voted value is written into the memory location and
local-value.

b) MISCO--MPARE is called with voted value.

c) If MISCOMPARE signals bad again then DECLARE HARD is called
with the bad channels ID. A reconfigure is returned by

RAM SCRUB and the function terminates.

6) If MISCOMPARE signals okay then the next memory word is checked.

7) If all the memory locations are good then a good test flag is
returned.

6) VOTER LATCH is a single line function that simply returns a flag

meanin--g all is well. This function, and its call from SYSTEM_TEST
have been commented out.

PACKAGE TEST STEP BY STEP: One function call does it all.

SYSTEM TEST is the driver that calls all the other functions. It returns a

_econfiguration flag when an error is found. The SYSTEM TEST

functions run in the lowest priority task rate group, wKenever there
is free CPU time.

i) SYSTEM TEST calls RAM PATTERN to check the RAM on the CPU processor

card. Any error will send an error message to the system by setting

the reconfigure flag. The function terminates.

2) RAM PATTEBN is called again to check the RAM on the memory card. If

this goes well then RAM is working, else the reconfigure flag is set
for that channel. The function terminates.

3) ROM SUM is then called by SYSTEM TEST. ROM SUM calls GET SUM to sum up

aI[the rows in that channel's R--OMmemory--for comparison. If an error

is found a reconfigure flag, with that channel's ID is returned. The
function terminates.

If all the tests were okay then a flag showing all the tests went well is
returned.

Package ERROR LATCH

OVERVIEW: This package contains the functions and procedures for checking,

clearing and masking of the voting error latches. It also has the latest latch

variable showing the current state of the latches. The latches are memory

mapped hardware locations that indicate detected errors. The latch array

holding the state flags for the error latches is initialized to no errors.

2 Procedures:

i) ADD [_%TCH maintains an integer array of the latest six latch
varTables. The oldest set is overwritten when the seventh or more

record is added.

2) CLEAR LATCH clears the error flags of the A, B, C and V latches for

all cEannels. The values of the error flags are lost, and not saved.

5 Functions:

i) ANY ERRORS is given three integers, A, B, and C, representing the

stat-e of the three channel's latches. If there are any errors, then

true is returned, else ANY ERRORS returns false.

2) LATCHED ERRORS is given three integers representing the three
channelTs latches. If a channel's error bit is set, then

LATCHED ERRORS returns a reconfigure flag to delete the bad channel.

A channel is deleted if, and only if, all the active channels agree

the channel is bad. This includes the bad channel knowing itself is

bad. Only one channel can be deleted at a time. There iS no visible
error routine to catch a channel that thinks itself is bad, when the

8

other channels think the channel is good. It is left to the voting
hardware to find that error. If only one channel is left, and thinks
itself is bad, then it returns a reconfigure flag so it can be
deleted.

STEPBY STEP:
i) CONFIGURATION.COUNTis called to determine the number of active

channels.

2) All the channels not in the configuration are kept from voting by

a case statement. Only the errors of the channels in the

configuration are used.

3) If all the active channels agree a particular channel's error flag

is set, then the reconfigure command is set to remove that channel

and the function terminates. If only some of the channels agree a

channel is bad, then nothing happens.

3) MAKE MASK uses the configuration variable to create the mask that
keeps bad channels from voting. It returns the mask as an integer.

4) READ LATCH returns an integer indicating the errors on the XA, XB,

XC, and XV data exchange registers.

5) READ CLEAR calls READ LATCH to obtain the current error states of

data-exchange latches--A,B,C and V. It then clears the latches and

returns an integer. The integer holds the previous error states of
the latches.

Package CLOCK_LATCH

OVERVIEW: This package manipulates bit-mapped flags to indicate the

systems' CPU and IOP clocks statuses. The procedures/functions utilize the

voting hardware to detect errors and to insure that all channels agree on the

state of the latches. The package also maintains mask values to eliminate

erroneous input from channels.

2 PROCEDURES:

i) ADD LATCH maintains a virtual stack of the latest six sets of bit

mapped clock latch flags. If the stack is full, the oldest set of

latch flags is discarded.

2) RECORD CHANGES checks the bit flags representing the current latches
for err-ors for each channel's CPU and IOP. If an error is indicated,

RECORD FDIR ERRORS.REPORT ERROR is called, passed the error type and

channeY ID.--The procedure-calls MEMORY UTIL.MASK to manipulate the

masks, and REPORT ERROR to set system error flags.

1 FUNCTION:

i) READ LATCHdetermines the present state of the clock latch flags and
asks-each active channel to vote on their value. This voted value

becomes the current value of all active channels' latch flags.
READ LATCH then calls ADD LATCH to record the current latch values.

Each-channels' latch flags are checked to determine if they have

9

changed since the function was last called. If so, RECORD CHANGES is

called (A_LY IT IS AL_AYS CALLED) to record these new _lock

latches. The current state of the latches is then incorporated into

the mask bit flags for each channel.

The package itself initializes the latches at the start to values that force

the checking of each channel's latch values.

Package FDIR

OVERVIEW: Package FDIR contains the driver procedure for most of the Ada

FDIR software (FAST), and 3 support procedures for the driver. These support

procedures handle i) the removal of a channel from the configuration, 2)

initializing procedure FAST, and 3) running the system self-test. FDIR also
contains the task FAST FDIR which initializes the Ada FDIR system, and calls

procedure FAST.

4 PROCEDURES:

i) REMOVE CHANNEL records and requests a system reconfiguration. It
also calls LOST SOUL if the removal results in only one channel being

left in the configuration. The last line in the procedure schedules
the LOST SOUL task.

:."_P BY STEP:

a) Call RECORD RECONFIGS.REPORT RECONFIG to record the required

reconfiguration.

b) Call CONFIG.RECONFIGURE to reconfigure the system.

c) Call CSDL RSP.SHAREDWRITE RECONFIG CMD to record the

reconfigu_ation in a-share_ data space for use later in this

package.
d) Call CONFIG.GET CONFIG to update the current configuration.

e) If only one channel is now running, call SYNC.LOST SOUL.
f) If the channel currently executing this code is the channel just

removed from the configuration, call SYNC.LOST SOUL. NOTE: This

removes the channel from execution until it is-in synchronization,

allowing it to run without being in the voting configuration.

g) Call CSDL_RSP.TSCHED to schedule the LOST_SOUL task for execution.

2) FAST is the driver procedure for most of the FDIR software. Due to

it's complexity, it is presented here in pseudo-code. A flow chart

diagram is contained in Appendix C.

STEP BY STEP:

i) If running in simplex mode, RETURN.
2) Call CONFIG.GET CONFIG to get current system configuration.

3) If 2 channels ar-e configured, and LOST SOUL is NOT running;

a) Call CSDL RSP.TSCHED to schedule the LOST SOUL task.

4) Call SYNC UTLS.PRESENT and CONFIG.INT2CONFIG--to get a configura-

tion variable representing the channels currently synchronized.

5) If less than 2 channels are synchronized,

a) Call CONFIG.NEW PRESENCE to see if the configuration matches the

channels in synchronization.

b) If a channel should be in synchronization but isn't, call

I0

RECORDERRORS.REPORTERRORto report the error, and
REMOVE--CHANNELto remove the channel.

c) Call C_FIG.GET CONFIG to get the current configuration, call

CONFIG.NEW PRES_CE to get current channels in synchronization,

and compare the two.

d) If a channel is not in synchronization, but is in the

configuration, call RECORD ERRORS.REPORT ERROR to report the
error, and REMOVE CHANNEL to remove the channel.

e) Call SYNC.LOST SOUL.

6) ELSE IF 2 or more channels are synchronized and the configuration

is not equal to the channels synchronized,

a) Call CONFIG.NEW PRESENCE to see if the third channel is

synchronized an_ not in the configuration, or if channels are

configured and not synchronized.

b) If a channel is configured but not synchronized, call

RECORD ERRORS.REPORT ERROR to report the error, and
REMOVE--CHANNEL to rem--ove the channel.

c) RETURN.
7) Call ERROR LATCH.CLEAR LATCH to read the current state of the

error latcKes, and clear the old copy.

8) Call ERROR LATCH.MAKE MASK to construct a mask preventing voting

by channels not in the configuration.

9) Call EXCHANGE.TRANSMIT and MEMORY UTILS.MASK to allow all

configured channels to vote on the current state of the error
latches.

10)Call ERROR LATCH.LATCHED ERRORS to determine if the hardware has

discovered-an error,if so (returned true-disable),

a) Call RECORD ERRORS.REPORT ERROR to report the error, and
REMOVE CHAN_L to remove The channel.

b) RETURN?
ll)Call CLOCK LATCH.READ LATCH to allow all channels in the current

configuratYon to vote-on the status of the clock latches and

record that value.

12)If the self test(which is not called) detected a channel that is

in the current configuration but is faulty;

a) Set flags to indicate that selftest found no errors, call
REMOVE CHANNEL to remove the channel from the configuration,

and RETURN.

13)Call CSDL RSP.SHARED READ RECONFIG CMD to read the last

reconfiguration performed-(for CP/I-OP as appropriate).

14)If the last reconfiguration indicated that a channel was removed

from the configuration,
a) Call CSDL RSP.SHARED WRITE RECONFIG CMD to set the flags in the

last reconfiguration-recor_ to indicate no reconfigurations

were performed.
b) Call RECORD ERRORS.REPORT ERROR to report the error, and

REMOVE CHAN_L to remove The last channel reconfigured again.

NOTE: This effectively disables recently synchronized channels

from voting.

c) RETURN.

15) END PROCEDURE FAST.

3) INIT initializes "last channel removed" variables to none(false-

disable) for the CP/IOP, sets selftest_reconfig variable to

Ii

none(false-disable), and calls CSDL RSP.TSCHED to schedule task

FAST FDIR.

4) SYSTEM TEST LOOP calls TEST.SYSTEM TEST to check memory and system

hardware. Sets variable selftest_reconfig to the reconfiguration

indicated by TEST.SYSTEM_TEST.

TASK FAST FDIR:

i) CalT CSDL RSP.INIT RSP to initialize the Aria runtime support

package.
2) Call CSDL RSP.BLOCK to prevent FAST FDIR from being called during

it's own execution.

3) Call procedure FAST.

4) On any exceptions, call SYSTEM.REPORT_ERROR.

PACKAGE STEP BY STEP (Compilation initializations)

i) Call CSDL RSP.INIT SHARED DATA to initialize memory mapped

locations-for "last channel removed" variables for both CP/IOP.

2) Set lost soul on flag to false.

12

ISOLATION

Fault isolation is handled by packages CONFIGand MEMORYUTILITIES.
PackageMEMORYUTILITIES actually provides support routines][or packages FDIR
and CLOCK LATCH. MEMORY UTILITIES provides calling procedures with the bit-

manipulatTon ability necessary for the use of bit-mapped error latches. CONFIG

isolates which channel is faulty, and disables the faulty channel from voting

by removing it from a "configuration variable".

Package CONFIG

OVERVIEW: This package contains the procedures/functions necessary to

maintain the current system configuration, to disable/enable a channel, and to

reconfigure the system. The package also checks for channels going off or

coming on line, and can reconfigure the system as necessary.

1 PROCEDURE:

I) RECONFIGURE checks the form of reconfiguration required (init,

enable, disable) and acts accordingly. If init, the package config

variable is modified so that it matches the reconfiguration record's

config variable. If the reconfig command is ENABLE, the procedure
checks which channel(s) to enable and sets the package config

variable to true for that channel(s). If DISABLE is specified, the

package config flag is set to false for the specified channel(s).
_ECONFIGURE then calls function CONFIG2INT to update the

configuration variable.

8 FUNCTIONS:

i) COUNT returns the number of channels presently operational.

2) INT2CONFIG returns a boolean flag array representing the present

configuration, derived from an integer passed in.

3) GET CONFIG returns the present configuration, represented as a

booYean flag set.

4) INT CONFIGADDR returns the memory address of the variable

INT--CONFIGT an integer representing the present configuration.

5) SIMPLEX ADDR returns the memory address of the boolean variable

SIMPLEX.

6) THIS CHAN returns a value of th@ type CHANNEL ID representing the

channel currently in control c the shared channel communication

lines. It calls a nested function, INTEGER TO CHANNELID which

converts an integer representation of the cSannel to one of the type

CHANNEL ID.

7) NEW PRESENCE, when passed the current configuration and the expected

configuration, returns reconfiguration flags. "false disable channel

A" indicates that the current configuration is proper. If current -

expected, flags are set to indicate "false disable channel A". Else
function COUNT is called to determine if more channels are running

13

than are expected. If so, flags are set to "true enable channel

A". Else set flags to "true disable channel A". Procedure then

checks configuration to determine which channel(s) is(are) not as

expected, and sets the channel flag(s) accordingly.

8) CONFIG2INT accepts flags representing the present configuration of

the system and returns an integer representing that configuration.

NOTE: 7=all 3=a,b 5=a,c 6=b,c.

PACKAGE STEP BY STEP:

I) The package first sets the configuration flags to indicate all
channels off-line.

2) The integer representation of the configuration is set to indicate
all channels off-line.

3) The processor_type flag is set to CP or IOP accordingly.

Package MEMORY UTILITIES

OVERVIEW: This package contains 68000 Assembly code to handle memory

manipulations that Ada does not support.

5 FUNCTIONS:

I) MASK returns the logical AND of the bit patterns of its two

9rguments.

2) COMBINE returns the logical OR of the bit patterns of its two

arguments.

3) CHANGE returns the logical XOR of the bit patterns of its two

arguments.

4) INVERSE returns the logical NOT of the bit pattern of its argument.

5) TEST LOCATION returns the integer result of the memory pattern test

fort-he given location andpattern.

14

RECONFIGURATION

The routines for performing reconfiguration of the system, including the

reintroduction of a processor after repair or disappearance of a transient

fault are in packages TRANSIENT, SYNC_UTILITIES, and SYNC.

Package TRANSIENT

OVERVIEW: Transient handles the storage and manipulation of the channel

hard/transient failure flags. It also keeps an unreliability index on all

three channels, and a single mean-time-to-repalr (mttr) indicator for any hard

failures. The unreliability index is a numerical value, which is increased

whenever a failure occurs, and decremented at regular intervals (10 times a

second) during regular system operation.

A channel failure is assumed to be transient until it increases the

channel's unreliability index past a set threshold (4 failures in one week).

As soon as a channel is pushed past the threshold, it is declared a hard
failure.

The following set of seven bottom level procedures/functions handle the

manipulation of failure error flags without making any decisions as to when or

how to remove/reinstate a failed channel.

4 F_C_EDURES:

i) REMOVE TICK subtracts one from each of the four unreliability indexes

and from 'mttr' if they are >0.

2) ADD FAILURE is calledwhenever a channel has suffered a failure.

ADD--FAILURE adds a set number to the unreliability index of the

indTcated channel, and 'mttr' is set to a standard mean time to

repair value.

3) DECLARE HARD is called when a channel is discovered to be a hard

failure? A local flag ('hard') is set to true for the specified
channel. The variable 'mttr' is set to a standard mean-time-to-

repair value.

4) ALL TRANSIENT resets all local hard failure flags to false.

3 FUNCTIONS:

I) GET HARD FAILURES returns a list of which channels are considered up,

and-whicK channels are considered hard failures.

2) OVER THRESHOLD compares the indicated channel's count variable to a

set_olerable value. If the count in question is over the tolerable

level, the function returns a true value.

3) TIME TO REPAIR checks to see if the mean time to repair has elapsed.
If it has, the variable 'mttr' is reset to a set value (mean time)

and the function returns a true value. The true value indicates that

the failed channel should have been repaire d by this time.

15

Package SYNCUTILITIES

OVERVIEW:The Sync utilities package contains three procedures written in
Motorola 68000 assembly-code for:

i) Synchronizing the FTPchannels,
2) Testing which FTPsare present.
3) Aligning a specified segmentof memoryto agree with the memoryof the

other channels,

3 PROCEDURES:

!) SYNC CHANS Synchronizes the channels through a process of increasing/

decreasing delays between memory writes. This stops when a

simultaneous write to a dedicated virtual receiver register is

detected or when the number of tries the procedure is given is

exhausted. The lengths of the delays are relatively prime numbers.

STEP BY STEP:

i) Halts all interrupts.
2) Determines its channel i.d.

3) Checks each dedicated virtual receiver register (DVRR) against the

proper channel code(passed in) to determine a channels

synchronized presence.

4) If all three channels did not show present and there are some

tries left, the procedure waits and then loops back to step 3.

5) If all channels show present then a flag, an integer, is returned

to show this. The interrupts are enabled and the procedure stops.
6) If the number of tries ran out before all the channels

synchronized then an integer flag is returned showing which
channels made it and which did not. The interrupts are enabled and

the procedure stops.

2) PRESENT returns a flag saying which channels are present, working.

STEP BY STEP:

I) Inhibits interrupts.

2) Locks the shared bus.

3) Writes A's unique pattern to the memory mapped hardware data

exchange registers.

4) Checks for the voted presence of A by comparing the receiver

register with what is there when A is present.

5) The results of the compare are used to update a configuration

variable showing current configuration.

6) Steps 3 - 5 are repeated, with new patterns, to test B and C.

7) A flag, an integer, is returned showing the present configuration,

the shared bus is unlocked and interrupts are enabled.

3) ALIGN MEM is given the start and end address in RAM memory. It will

correct memory inconsistencies one word at a time. A majority vote is

taken onwhat a word should contain. The voted word is then copied

back into the memory locations used for the majority vote. The

process is then done for the next word in memory.

16

NOTE:Voting is done in hardware. When an error is found it is

corrected by majority vote.

STEP BY STEP:

i) ALIGN MEM is given a start address and an ending address. For each

indivYdual memory location:

a) One word (16 bits) is read from memory and transferred to the

data exchange register. The hardware does a majority vote on
the word and sends it to each channels' receiver.

b) The voted value of the word is then read from the receiver

register and written back into the same location.

c) Steps a and b, are repeated for every word of memory between
the start and end addresses.

Package SYNC

OVERVIEW: SYNC contains several internal support procedures: ADD CHANNEL,
LOCK and UNLOCK SHARED BUS, ALIGN INTERVAL TIMERS, and three main procedures:

ALIGN SH MEM, INITIAL,--and LOST SOUL. ALI_ SH MEM assures that all four

sections-in the shared memory bank contain tSe same information. LOST SOUL

re-synchronizes a channel that has fallen out of synchronization. INITIAL sets

up the FDIR system for operation.

7 PZOC__gURES and 1 TASK:

I) ADD CHANNEL initializes a reconfigure variable to "OK" for the
indicated channel. It then calls RECORD RECONFIGS.REPORT RECONFIG to

log the system reconfiguration. FinalIy?CONFIG.RECONFIGURE is

called to enable the indicated channel and to update the

configuration flags.

2) LOCK SHARED BUS writes an integer flag directly to a memory location

reser-ved fo? the SHARED_BUS flag.

3) UNLOCK SHARED BUS Clears a memory location reserved for the
SHARED--BUS fl_g.

4) ALIGN SH MEM appears to align four sections of a single bank of

memory. Calls LOCK SHARED BUS, calls SYNC UTILITIES.ALIGN_MEM 8

times to align 4 sections _f a bank of memory, calls
UNLOCK SHARED BUS.

5) ALIGN INTEI_VAL TIMERS forces the values of each channel's interval

timer-to be congruent with the other channels, it is called after

LOST SOUL has been picked up in the LOST SOUL procedure. NOTE: This

implementation only aligns timer 1 of (0?1,2), and assumes a 2 byte

binary count in mode i. The timers will appear stopped from the time

this procedure reads them until they are rewritten.

6) INITIAL synchronizes the CPs\IOPs, and initializes the

reconfiguration flags and records.

17

STEPBY STEP:
Tests to see if CPor IOP.
If IOP

Wait for CPto be ready
If SIMPLEX,

Set configuration flags to indicate which channel is up.
Set RECONFIG variable to indicate initialization.

Call RECORD RECONFIGS.REPORT RECONFIG to report initialization.

Call CONFIG.--RECONFIGURE to reconfigure the system.

Call EXCHANGE.SET SIMPLEX EXCHANGE to preclude hardware voting.

Call CONFIG.CONFIG2INT fo-{ integer representation of

configuration.

to calling procedure.
Else if IOP and not SIMPLEX,

Call LOCK SHARED BUS.

Call SYNC--UTILITI--ES.SYNC CHANS twice to try to get all channels

synchronized.

Set current_config to indicate all channels on line.
Set RECONFIG variable to indicate initialization.

Call RECORD RECONFIGS.REPORT RECONFIG to log initial

reconfiguration.

Call CONFIG.RECONFIGURE to reconfigure the system.

Call CONFIG.CONFIG21NT for integer representation of

configuration.
Call UNLOCK SHARED BUS.

Wait for CP--to finTsh.

If more than one channel up,

Call SYNC UTILITIES.ALIGN MEM to align data exchange area.

Call ERROR LATCH.CLEAR LATCH.

Else call LOST SOUL. -

END lOP CLAUSE.

If process is a CP then, (*NOTE: lOP WILL BE INITIALIZED FIRST.*)

Wait for IOP to be ready.

Signal IOP that CP is also ready.
Wait for IOPs to become synchronized.

If SIMPLEX,

Set configuration flags to represent channel configured.
Set RECONFIG variable to indicate initialization.

Call RECORD RECONFIGS.REPORT RECONFIG to report initialization.

Call CONFIG.--RECONFIGURE to reconfigure the system.

Call CSDL RSP.RESET SYSTEM TIME.

Call EXCHDLNGE.SET SI--MPLEX EXCHANGE to preclude hardware voting.

Call CONFIG.CONFIG21NT fo-{ integer representation of

configuration.

RETURN to calling procedure.

Else if not SIMPLEX,

Call _K SHARED BUS.
Call SYNC--UTILITIES.SYNC CHANS twice to attempt channel

synchronization.

Set configuration flags to represent current configuration.

Initialize reconfiguration variable to indicate initialization.

Call RECORD RECONFIGS.REPORT RECONFIG to record initial

reconfiguration.
Call CONFIG.RECONFIGURE to reconfigure system.

18

Call CONFIG.CONFIG2INTfor integer representation of

configuration.
Call UNLOCK SHARED BUS.

If more than one cSannel up,

Call SYNC UTILITIES.ALIGN MEM to align data exchange area.
Call CSDL--RSP.RESET SYSTE_q TIME.

Call ALIGN SH MEM. --

Call ERROR LATCH.CLEAR LATCH.

Else call LOST SOUL. -

END PROCEDURE.

7) LOST SOUL attempts to synchronize a stray channel with those

cur rent][y running.

STEP BY STEP:

Calls CONFIG.GET CONFIG to get current configuration.

Repeats
Call LOCK SHARED BUS.

Call SYNC--UTILITI--ES.SYNC CHANS to try to get the channels to

synch-{oni ze.
Call UNLOCK SHARED BUS.

Until the number of channels up is greater than one.

Sets flags to indicate the number of CPs/IOPs up.

NOTE: THE REST OF THE PROCEDURE IS COMMENTED OUT.

--If a "lost soul" is found,
-- Call CONFIG.NEW PRESENCE.

-- Call CONFIG.RECONFIGURE.

-- If the lost soul found was a CP,

-- Call RESET CLOCK and incorporate value into time state.
-- Call CSDL RSP.SET SYSTEM TIME.

-- Call ALIGN SH MEM.

-- End if CP.

-- Call SYNC UTILITIES.ALIGN MEM to align data exchange area.
-- Call ALIGN INTERVAL TIMERS.

Call ERROR LATCH.CLEAR LATCH.
-- Call I MAChINE.RESTART?

--End if.

1 TASK:

i) LOST SOUL SYNC

STEP BY STEP:

Call CSDL RSP.INIT RSP to perform initializations necessary for

the cs_l_rsp run-time support package procedures.

Loop,
Call CSDL RSP.BLOCK to prevent task from being called during

it's o_ execution.

Call LOST SOUL to attempt to synchronize the stray channel(s).

End loop

Exception, (If LOST SOUL fails to synchronize any channels.)
When others=> call[SYSTEM.REPORT ERROR.

End Exception, and task.

19

HARIX4AREINTERFACE

The hardware interface package EXCHANGE allows processor pairs to operate

independently of each other while still allowing communication between them.

This is accomplished by giving the independent processor pairs access to

hardware that transparently provides the necessary communication between the

operating pairs.

Package EXCHANGE

OVERVIEW: This package facilitates the exchange of information between

channels. The two functions provide for the exchange of information at both
the transmitter-to-transmitter level (shared-data channels), and the

interstage-to-receiver level (dedicated-data channels). The procedure allows

for the voting hardware to be bypassed.

2FUNnieS:

i) TRANSMIT accepts data from a channel in the form of an integer. This

information is passed to the virtual receivers of all three channels.

The function returns the hardware-voted value to the calling

procedure.

2) RAW TRANSMIT accepts data in the form of a long_integer. This data
4s passed to the other channels at the virtual transmitter level.

The return value is the hardware-voted value of the long_integer.

1 PROCEDURE:

i) SET SIMPLEX EXCHANGE switches the registers used in the above

functions to preclude hardware-voting.

NOTE: There is no procedure to reset the virtual registers that

SET SIMPLEX EXCHANGE switches. Therefore, there is no way of

reactivating the voting hardware once it is disabled, short of

rebooting the system.

2O

ERROR LOGGING ROUTINES

The routines for logging errors are in packages RECONFIG LOG,
RECORD FDIR ERRORS, FDIR ERROR LOG, LATEST FDIR ERRORS, EXCEPTION LOG, AND

RECORD--RE_IGS. These--routines were written _or debugging purposes, but they

also p_ovide a useful maintenance log of system performance.

Package RECONFIG_LOG

OVERVIEW: The purpose of this package is to maintain a reconfiguration

log. REC(ANFIG.LOG contains only one procedure, ENTER. This procedure is

identical to one in package FDIR ERROR LOG with the same name. The reason for

the procedure duplication is so t-hat two distinct logs, one for fault errors

and one for reconfiguration data may co-exist.

1 PROCEDURE:

i) mVIER inserts a "log_entry" value into a "log_array" structure. The

"log_array" is represented by a circular array of "log entrys". The
value is inserted in the next available empty position-in the log

array. Should none exist, the value is inserted in place of the

oldest "log_array" entry.

Package RECORD FDIR ERRORS

OVERVIEW: The entire package is actually a dummy procedure header. When

the only procedure, "REPORT ERROR" is called, it passes control directly to

package FDIR ERROR LOG procedure ENTER. This package provides isolation from

the error log in package FDIR ERROR LOG by providing a different set of access

privileges than those provide_ by package FDIR ERROR LOG. RECORD FDIR ERRORS
allows no retrieval of log information, only t_e reporting of error conditions.

1 PROCEDURE:

i) REPORT ERROR calls package FDIR_ERROR_LOG procedure _rrER.

nothing else.

It does

Package RECORD RECONFIGS

OVERVIEW: The purpose of this package is to maintain a reconfiguration

log. RECORD RECONFIGS contains only one procedure, REPORT RECONFIGS. This

procedure calTs RECONFIG LOG.ENTER. The procedure RECONFIG--LOG.ENTER is

identical to one in package FDIR ERROR LOG with the same name. The reason for

the procedure duplication is so that two distinct logs, one for fault errors

and one for reconfiguration data may co-exist. The purpose of this package is

to limit access to the reconfiguration log created by RECONFIG LOG to the entry

of log entries only.

1 PROCEDURE:

i) REPORT RECONFIG calls RECONFIG IA3G.ENTER, passing it an ITEM as

define_ in RECONFIG_TYPES, record LOG_ENTRY.

21

NOTE:_NTERinserts a "log_entry" value into a "log array" structure. The
"log array" is represented by a circular array of "log entries". The value is
insetted in the next available empty position in the log array. Should none
exist, the value is inserted in place of the oldest "log_array" entry.

Package FDIRERRORLOG

OVERVIEW: This package contains one procedure and one function. Procedure

ENTER updates the error log. Function GETLOG produces and returns a copy of the

error log. These functions perform two error-log maintenance functions for the

FDIR error log. They serve to isolate the error log from other packages and

provide a data abstraction level allowing errors to be reported and logged from

other packages regardless of error-log structure.

1 PROCEDURE:

I) ENTER inserts a log entry value into the "log array", a circular

array. The value is inserted at the next empty position, or if the

log_array is full, the new value overwrites the oldest existing entry.

1 FUNCTION:

i) GETLOG copies the "internal_log" into a "log" record, records the

number of entries, and returns the log record with the oldest log

entry in the first position.

Package LATEST FDIR ERRORS

OVERVIEW: This package serves to limit access privileges to the current

copy of the FDIR error log contained in FDIR ERROR LOG. LATEST FDIR ERRORS

allows read access but not write access to t_e error log. - -

1 FUNCTION:

I) GET LOG calls FDIR ERROR LOG.GETLOG which returns a copy of the

curr-ent FDIR error--log. -

Package EXCEPTION LOG

OVERVIEW: This package contains two procedures. Procedure ENTER updates

the error log. These procedures perform two error-log maintenance functions for

the exception log. Procedure GETLOG produces and returns a copy of the error

log. They serve to isolate the exception log from other packages and provide a

data abstraction level allowing exceptions to be reported and logged from other

packages regardless of exception log structure.

2 PROCEDURES:

I) _ inserts a log_entry value into the "log_array", a circular

array. The value is inserted at the next empty position, or if the

log_array is full, the new value overwrites the oldest existing entry.

22

2) GETLOG copies the "internal log" into a "log" record, records the
number of entries, and retu-{ns the log record with the oldest log

entry in the first position.

23

CONCLUDING

The Ada fault detection, isolation, and reconfiguration (FDIR) software of

the AIPS Fault-Tolerant Processor that was current as of December 1986 was

documented. Since the system is still under development, this report is

intended only to aid in understanding of the FDIR functions and to aid in

identifying changes or additions needed to the system. This report is not

intended to take the place of final documentation of the FDIR functions.

24

APPENDIX A. INDEX OF PROCEDURES AND FUNCTIONS

Name Package
ADD CHANNEL SYNC Procedure
ADD FAILURE TRANSIENT Procedure
ADD LATCH ERROR LATCH Procedure
ADD--LATCH CLOCK--LATCH Procedure

w

ALIGIg INTERVAL TIMER SYNC Procedure

ALIG_--MEM -- SYNC UTILITIES Procedure

ALIGN--SH MEM SYNC-- Procedure

ALL T_I _T TRANSIENT Procedure

ANY ERRORS ERROR LATCH Procedure

BAD TEST TEST Function

CHANGE

CLEAR LATCH

COMBINE

CONFIG2INIT

COUNT

MEMORY UTILITIES

ERROR EATCH
MEMORY UTILITIES

CONFIG--

CONFIG

Function

Procedure

Function

Function

Function

DECLARE HARD TRANSIENT Procedure

ENTER

ENTER

ENTER

FAST

FAST FDIR

EXCEPTION LOG

FDIR ERRO_ LOG
RECONFIG LOG

FDIR

FDIR

Procedure

Procedure

Procedure

Procedure

Task

GETLOG

GETLOG

GET CONFIG

GET--HARD FAILURES

GET--LOG--
GET--SUM

EXCEPTION LOG

FDIR ERRO_ LOG
CONFIG

TRANSIENT

LATEST FDIR ERRORS

TEST

Procedure

Procedure

Function

Function

Function
Function

INIT

INITIAL

INIT CONFIGADDR
INIT_CONFIG--

INVERSE

FDIR

SYNC

CONFIG

CONFIG

MEMORY UTILITIES

Procedure

Procedure

Function

Function

Function

LATCHED ERRORS

LOCK SHARED BUS

r_ST--SO_ -
LOST--SO0_ S_C

ERROR LA"I_H
SYNC

SYNC

SYNC

Function

Procedure

Procedure

Task

MAKE MASK

MASK--
MISCOMPARE

ERROR LATCH

MEMORY UTILITIES

TEST

Procedure

Function

Procedure

NEW PRESENCE CONFIG Function

OVER THRESHOLD TRANSIENT Function

15

8

9

17

16

17

15

8

6

14

8

14

14

13

15

22

22

21

10
12

23

22

13

15

22

6

ii

17

13

13

14

8

17

19

19

9

14

5

13

15

25

PRESENT Procedure

SCRUB
RAW TRANSMIT
READ CLEAR
READ--LATCH
READ--LATCH

RE_IGURE
RECORD CHANGES

REMOVE _L
REMOVE TICK
REPORT ERROR

REPORT RECONFIG
ROM SUM

SET SIMPLEX EXCHANGE
SIMPLEX ADD_
SYNCH CHANS
SYSTE[_ TEST
SYSTEM TEST LOOP

TEST LOCATION
THIS--CHAN

TIME TO REPAIR
TRANSMIT

UNLOCK SHARED BUS

VOTER LATCH

SYNC UTILITIES

TEST
EXCHANGE

ERROR LATCH
CLOCK LATCH
E_OR--LATCH
CONFIG

CLOCK LATCH
FDIR
TRANSIENT

RECORD FDIR ERRORS
RECORD--RE_IGS
TEST

EXCHANGE

CONFIGURATION
SYNC UTILITIES
TEST

FDIR

MEMORY UTILITIES
CONFIG
TRANSIENT

EXCHANGE

SYNC

TEST

Function
Function

Function
Function

Function
Procedure
Procedure
Procedure

Procedure
Procedure
Procedure

Function

Procedure
Function

Procedure
Function
Procedure

Function

Function
Function
Function

Procedure

Function

7
20

9
9
9

13

9
i0
15

21
21
6

20

13
16
6

12

14
13
15
20

17

26

APP_)IX C.
OF _ FAST

_ORIOINAIS PAGE IS

O@ POOR QUALITY

¥

s__ P.ECC_TG
(c'P)(DI_CT

mmmm_x_)
msccezxo _ (@)]

28

• 4 I

I1-1 I _ I

i_l -

\J _J
27

,,_t I

i

'hI
I

'Ill

iiI

i/

"-h
N

N
li,1
I,-I

N

Standard Bibliographic Page

1. Report No. 1 2. Gove_ment Acc_sion No.

NASA TM-89154 I
4. Title and Subtitle

Documentation of the Current Fault Detection,
Isolation, and Reconfiguration Software of the AIPS
Fault-Tolerant Processor

7. Author(_

David T. Lanning, Allen W. Shepard, and Sally C.

3. Recipient's Catalog No.

5. Report Date

August 1987
6. Performin_ Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-66-21-01

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum
14. Sponsoring Agency Code

Johnson

9. Per_rming Org_ization Name and Addre_

NASA Langley Research Center
Hampton, VA 23665-5225

12. Sponsoring Agency Name and Addr_s

National Aeronautics and Space Administration
Washington, DC 20546

15. Supplementary Notes

David T. Lanning and Allen W. Shepard, Old Dominion University, Norfolk, Virginia.
Sally Co Johnson, Langley Research Center, Hampton, Virginia.

16. A_tract

This report contains documentation of the December 1986 version of the ADA
code for the fault detection, isolation, and reconfiguration (FDIR) functions
of the Advanced Information Processing System (AIPS) Fault-Tolerant Processor
(FTP). Because the FTP is still under development and the software is constantly
undergoing changes, this should not be considered final documentation of the FDIR
software of the FTP.

17. Key Words (Sugg_ted by Authors(s))

Fault tolerance
Fault tolerant processor
Advanced Information Processing System

19. Security Classif.(of this report)

Unclassified

18. Distribution Statement

until August 31, 1989

Subject Category 61

I20"Security Clamaif'(°fthis page)Unclassified 121' N°' °f Pages I 22" Price30

