@ https://ntrs.nasa.gov/search.jsp?R=19940025655 2020-06-16T14:52:37+00:00Z
SN TE—
. &

NASA Technical Memorandum 109101

TOTAL User Manual

Sally C. Johnson
Langley Research Center, Hampton, Virginia

David P. Boerschlein
Lockheed Engineering & Sciences Company, Hampton, Virginia

(NASA-TM-129101) TOTAL USER MANUAL N94-30160
(NASA. Langley Research Center)
74 p
unclas
April 1994 G3/62 0004780

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

TOTAL User Manual

Sally C. Johnson
and
David P. Boerschlein

NASA Langley Research Center
Hampton, VA 23681-0001

Abstract

Semi-Markov models can be used to analyze the reliability of virtually any fault-tolerant
system. However, the process of delineating all of the states and transitions in the model
of a complex system can be devastatingly tedious and error-prone. Even with tools such
as the Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST), the
user must describe a system by specifying the rules governing the behavior of the system in
order to generate the model. With the Table Oriented Translator to the ASSIST Language
(TOTAL), the user can specify the components of a typical system and their attributes in
the form of a table. The conditions that lead to system failure are also listed in a tabular
form. The user can also abstractly specify dependencies with causes and effects. The level
of information required is appropriate for system designers with little or no background
in the details of reliability calculations. A menu-driven interface guides the user through
the system description process, and the program updates the tables as new information is
entered. The TOTAL program automatically generates an ASSIST input description to
match the system description.

Contents

1 Introduction 1

2 The TOTAL Interface 3

3 Example System Description 8
3.1 Spare Pools

3.2 Componentso e e 10

3.3 Dependencieso 16

3.4 System Failure Conditions oo 21

3.5 Display of System Definitions oo 25

3.5.1 Adding auxiliary state-space variables. 25

3.6 Writing Comments and/or Remarks to describe a system 25

4 Generating and Solving the Reliability Model 29

4.1 Algorithm for Generating ASSIST-Language Description 29

4.2 Naming Conventions Used During Generation 30
4.3 Using the Menu-Driven Interface to Generate and Edit the ASSIST-Language

Description o v o e 33

4.4 Setting Generation Options and Values 34

5 Model Generation Logic and Mathematics 41

5.1 Spare Component Logic and Mathematics 41

5.2 System Degradation Logic and Mathematics 42

5.2.1 Degrade “Triplex to duplex to simplex” 42

5.2.2 Degrade “Triplex to simplex” 43

No transients occur for component 43

Transients occur for component 44

5.2.3 Degrade “Duplex to zero” (Self-Checking Pairs) 46

5.3 Recoveries and Death States o oo 47

6 System Requirements 48

6.1 Hardware/Operating System Requirements 48

i

6.1.1 Requirements to run pre-compiled versions 48

6.1.2 Requirementstore-compile 0. 48

6.2 Memory Requirements 0o oo 49
6.3 Software System Requirements., 49
6.4 Monochrome vs Color 49

7 Concluding Remarks 50
8 References 51
A Command Line Interface 52
A.1 Command Line Options File 52
A.2 Command Line Options 52
A3 TheResource File. 55
A.4 Converting Between ASCII and TOTAL Description Files 55

B Installation of TOTAL 56
B.1 Under SUN OS e e e 56
B.2 Under VMS e e 56

C Icons for TOTAL under Motif 57
D Sample ASSIST file generated by TOTAL 58

List of Tables

1 Table of prefixes used in generated ASSIST file (Part I) 31
2 Table of prefixes used in generated ASSIST file (Part II) 32
3 Table of miscellaneous identifiers used in generated ASSIST files 32

List of Figures

1 Reliability Analysis Tool Set 1
2 System Description Panel o0 o 3
3 Using Edit Pull-Down Menu to Append a New Component 4

ih)

Using “File” pull-down menu« oo oo 5
Cannot quit until changes saved« . o 6
System verifies Erase option before taking action 7
Using pull-down menu to show system definitions 7
Example System 8
Menu Panel for Describing Pool of Spares oo oo 9
Component configuration for “processors” e 10
Partially detectable dedicated spare failures 12
Rates for component “processors” o oo s e e 14
Component configuration for “bus” 14
Component rates for “bus” 15
Specification of third dependency 20
Concise Specification using “=" to denote “same index”o 20
Index of “=" Belongs only on Effecto 21
System Failure Description for Majority Vote Failure of Processors 22
A sample system modeled with TOTALo 24
Using pull-down menu to show system definitionso 25
Workstation with both System Description and Definitions panels present 26
Defining an extra state-space variableo e 27
Using pull-down menu to specify comments and/or remarks 28
Input of extra remarks/comments 28
Editing the Generated ASSIST Code Under VMS . . o 33
Editing the Generated ASSIST Code Under UNIX. oo 33
Editing the Generated ASSIST Code with EMACS 34
Cannot Quit When an Editor Session is Still Active oo 34
Using Pull-Down Menu to Set Generation Parameters 35
Default Options Used to Generate ASSIST Output File 37
Changing Options Used to Generate ASSIST Output File. 37
Warning for Systems for Which TRIM Should RemainOn 38
Warning Also Appears When Rates Are Changed 39

Warning Also Appears with non-exponential Rates when Transients are Modelled 40

Icons that appear when TOTAL panels are minimized 57

v

1 Introduction

The Table-Oriented Translator to the ASSIST Language (TOTAL) computer program is a proto-
type spreadsheet interface for a reliability analysis tool set developed at NASA Langley. The tool
set began with the development of several Markov and semi-Markov model solvers, which pro-
vide the flexibility to represent the failure behavior of virtually any fault-tolerant system. These
include the Semi-Markov Unreliability Range Evaluator (SURE), the Scaled Taylor Exponential
Matrix (STEM) solver, and the Padé Approximation With Scaling (PAWS) program|1, 2, 3].
Since the enumeration by hand of the states and transitions of the Markov model is only tractable
for the simplest of systems, the ASSIST language was developed to allow the user to describe
the failure behavior of the system in a high-level abstract language[4]. The ASSIST computer
program was then developed to use the ASSIST description as a set of rules for automatically
generating a reliability model[5]. The ASSIST program simply follows the rules as specified
by the user and makes no assumptions about the system, so ASSIST is completely general
and could theoretically be used to generate a reliability model for virtually any fault-tolerant
system. However, the user must learn the concepts and syntax of the ASSIST input language
before he can use it, and validation that the ASSIST description is accurate can be difficult for
fault-tolerant systems with complex failure properties and dependencies.

The TOTAL interface program allows the user to describe a system at an even higher level of
abstraction. Instead of providing the complete flexibility of the ASSIST language, the TOTAL
interface provides the user with a structured set of choices for describing the system components
and their interactions. The flow of information between the computer programs in this tool set
is shown in Figure 1.

Spreadsheet Abstract Semi-Markov Reliability
System — TOTAL[— Language —*] ASSIST[— Reliability—= SURE [g1 42
Description Description Model

Figure 1: Reliability Analysis Tool Set

The simplest systems are non-reconfigurable ones whose system failure is based on what com-
binations of its components have failed. The failure behaviors of these systems can be fully
described by listing the components and their failure rates and enumerating which combinations
of component failures lead to system failure, such as is done in a fault tree. This description is
typically facilitated by grouping like components into subsystems.

Reconfigurable systems can be more complex to describe. Each subsystem may have spare
components that are brought into the active configuration to replace failed components. Once
the available spares are exhausted, a subsystem may degrade by removing failed components
from the voting process. The system may provide full or partial detection of failed spares.
Some spare components may be shared between subsystems and thus available to replace failed
components in one or more subsystems.

More complex systems may exhibit failure dependencies between components; for example,
failure of a power supply may cause the components dependent upon it to fail as well. A

processor may depend on a network element for communication with the other processors in
the system. Such dependencies can sometimes be included in the system failure combination
descriptions. However, it is often more convenient and concise to list these as separate failure
dependencies.

The level of system description given above seems appropriate for designers of fault-tolerant
systems, even those with no background knowledge in reliability analysis calculations. This is
the level of information needed to build a TOTAL system description. The user does not have to
know how to build reliability models; he only needs to know the failure behaviors of his system.

The TOTAL program provides a menu-driven interface to guide the user through each phase
of the system description. The system description consists of four parts: 1) a spreadsheet
describing the components in the system, 2) specification of the failure dependencies between
the components, 3) a description of the conditions representing system failure, and 4) a list of
sets of pooled spares that can be shared between the components in the system. As the menu-
driven interface guides the user through the system description process, the TOTAL program
interactively builds and displays the set of tables describing the system. Once the system
description process is complete, the user can generate the ASSIST-language description, execute
the ASSIST program to enumerate the states and transitions of the model, and solve for the
probability of system failure using the SURE, STEM, or PAWS programs, all from the TOTAL

menu-driven interface.

The TOTAL program was developed as a prototype system to explore and demonstrate the
feasiblity of a spreadsheet interface for reliability analysis. The prototype was developed and
beta-tested with a limited menu-driven interface and no direct input to the displayed tables.
If development were to continue, later versions of TOTAL would allow the user to directly
input and manipulate data in the tables, and the TOTAL spreadsheet program would maintain
consistency between tables. With these capabilities, the novice user would be guided in the
system description process by the easy-to-follow menu interface, while the more experienced
user would be able to efficiently enter data directly into the spreadsheet tables.

The TOTAL prototype cannot be considered a commercial-quality tool. The program was
subjected to a moderate amount of testing inhouse plus a minimal amount of beta testing.
Thus, the user is cautioned to examine the generated ASSIST-language description to validate
that it is a reasonable representation of the intended system.

The menu-driven interface for the Version 1.0 prototype of TOTAL is introduced in Chapter
9. The details of how to use the interface to enter a system description are described and
demonstrated for an example system in Chapter 3. Chapter 4 discusses generation and solution
of the Markov model in general. Chapter 5 details the specific rules that are applied when
generating the state transitions and the model. Chapter 6 details the system requirements for
the TOTAL program, followed by some concluding remarks.

2 The TOTAL Interface

The menu-driven interface available in TOTAL Version 1.0 is introduced in this section. The
user enters the interactive interface by entering the command “total”. The user can modify the
TOTAL program to accommodate large or unusual system descriptions using the command-line
options shown in Appendix A. Upon entering TOTAL, the System Description panel shown
in Figure 2 is displayed on the user’s workstation. The figures in this manual show the panels
as they are displayed on a SUN OS system running Motif. The panels displayed on a VMS
computer contain the same information and “feel” the same but may look slightly different.

o e e e e R R 23Crip ST e T R
|poolname size fallure-rate prob-of-detection
Spare Pools:
h —
¥ |[pame redund [krans/int [degrad dedicated spares |[pools: d
Components:
Edit

Dependencies:

|condition: cause -> effect
Edit l

~

Conditions:

System Failure l

Edit

‘? —
]

Figure 2: System Description Panel
This panel contains four tables for displaying the system description:

e Spare Pools
e Components
e Dependencies

¢ System Failure Conditions.

The Spare Pools table holds the descriptions of any pools of spare components that can be used
to replace failed components. The Components table describes the components in the system.

3

Each line of the table represents one subsystem of the system, where a subsystem is made up of
like components. Any failure dependencies are depicted in the Dependencies table. Finally, the
System Failure Conditions table lists the conditions that are to be modeled as denoting system
failure.

Beside each table is an “Edit” pull-down menu, represented as a rectangle!, for entering or
modifying entries in that table. The user displays the pull-down menu by moving the mouse
cursor over the Edit pull-down menu and pressing and holding down the left mouse button.
Figure 3 shows the user selecting the Append option from the Edit pull-down menu for the
Components table.

pociname || size fallure-rate prob-of-detection
Spare Poais:
I File “ow.l

dedicated-spares

trans/int

| [J
cles:
—
— j

Figure 3: Using Edit Pull-Down Menu to Append a New Component

Each pull-down menu contains five options:

Append - Add a new entry to the end of the table

Copy - Create a new entry after a specified entry by modifying
a copy of that entry description

Delete - Delete an entry

Insert - Insert a new entry before a specified entry

Modify - Modify an existing entry

While still holding down the left mouse button, the user selects an option by moving the mouse
over the selection. When the user releases the left mouse button, a new menu panel correspond-
ing to the option selected will appear on the screen. The user must use the Append option (and
not the Insert option) to input the first entry in each table.

The System Description Panel also contains two additional pull-down menus: the File menu
and the “Opt’s” or Options menu. The File menu contains the following functions:

1On color terminals the pull-down menu rectangles are yellow

i=9

Erase
New

Old
Save

Save As
Generate ASSIST

Edit ASSIST
Run

Edit Output

Delete all existing entries in the current system description
Delete all existing entries in the current system description and
assign a new name to the current system description

Delete all existing entries in the current system description and
read in a system description from a file

Save the current system description in a file under the current
name

Save the current system description under the specified name
Generate an ASSIST input description from the current system
description

Edit the generated ASSIST file using EVE under VMS or

vi under Unix?

Generate the model using ASSIST and solve the model using
SURE

Edit the generated SURE output file as produced by the “Run”
option.

Delete Delete the specified system description file
Batch Read in a set of TOTAL instructions from a batch file
Quit Exit the TOTAL program

Figure 4 shows the user selecting to read an old file from the File menu.

failure-rate prob-of -dstection
Spare Pocls
fie || Opt's
Erase
« |pame redund [krans/int [Hdegrad [[dedicated-spares [pools: N"{ SO
Companents Oid
&= o
Save As
Generate ASSIST
Edit ASSIST
Run
Edit Output
Delete
T = Batch
Dependencies condition: cause -> effect I| Qut
- =
System Falfure
Condiions: §~

Figure 4: Using “File” pull-down menu

Once the system description is complete, the user should save the model with the “Save” or
“Save As” function from the “File” menu before quitting. These functions copy the model
description from the computer memory onto the disk file. Any model in memory when the user

2the EMACS editor is used when the —ema command line option is given

exits TOTAL or the system goes down will be lost forever. If the model is saved on a disk file,
it will remain even if the computer is turned off.

If the user decides to quit without saving the model, TOTAL will protest as shown in Figure
5. The TOTAL program knows when a change has been made because the user had to click
on an “Okay” button from some description panel in order to make a change. The program
disallows the user from quitting or calling up another model with the “Old” function from the
“File” menu until the old model has either been saved or erased.

R s v Sevcrpion (70 a1, vi 4 HE R I R
pociname || size fallure-rate prob-of-detect ion
s"."-pm‘,‘ E-m
¢ " g [dicated-spares 18:
ompone) .
p 0 Syviem has boen modified. Beve or eraew fAirst. | S
| - e —————— e —
b condition: cause -> effect
REM(processors[l]) -> REM(memories(i])
REM(processors 2}) -> REM{memories(2])
REM(processors{3]) -> REM{memories[3])
| - e
System Fajlure
EATHI? MAJ(processors)
Conations: |BEATUIF MAJ (wemories)
- DEATHIF MAJ(bus)
o

Figure 5: Cannot quit until changes saved

If the user decides to erase the changes entirely, the “File” menu is pulled down to the “Erase”
function. The system verifies that the user really wants to erase the system from memory as
illustrated in Figure 6.

As shown in Figure 7, the Options Menu contains the following three options:

¢ Set Code Generation Options/Values
e Show System Definitions

¢ System Description Comments and/or Remarks

Figure 7 shows the user selecting the option to “Show System Definitions” from the “Opt’s”
options menu.

As the user describes his system using the menus, the system description is displayed in the
tables. The text in the tables can extend past the right edge or the bottom of the tables, and
this data can be viewed by scrolling each table using the scroll bars provided. Although tables
can be scrolled, the text in the tables is static and cannot be entered or modified directly in
Version 1.

prob-of -detaction

"l l E-m
ai hame redund [Erans/int ‘ad [l dedicated-spares 18:
M elatel 4| processors ¥ treans 3-2-1 1 6.113e-4 0.664p7
to D y :-:rlol 3 trans 3-2-1 0 P
. camend | |) bus 4 non || 0

condition: causs -> sffect
1)) -> 1e8{1))
P o{2]) > ...H:

lmcpmqnorlh) -> uEN{memories{)
| Systam F allurs
Conditions.

E

gnl‘ull ngrocouor-)
RATHIT MAJ(memories)
DRATHIF MAJT(bus)

Figure 6: System verifies Erase option before taking action

poolname [i size failure-rate prob-of-detaection
Spare Pools: n
- Sual
{Set Code on Optl
e 1 [hame redund [rans/int [degrad dodlcnodwplrls"ws””m = — —
b o | Uiprocessors 3| trans 3.2-1] L 6.113e-4 0L L andfor
1l memories 3| trans 3-2-1 0
| bus L non o
K
Joondition: cause -> effact
Deper
REM(processors(i]) -> REM(memories|i})
REM{processors{2)) -> REM(memories|[2})
REM{processors{l]) -> REM{memories[3])
| - =
System Faiiure
BATHIT MAJ{processors)
Conations. IREATIP Mo (Bancries)
E DBATHI? MAJ(bus)

—

Figure 7: Using pull-down menu to show system definitions

3 Example System Description

In this section, the TOTAL menu-driven interface will be described and illustrated by way of
example. The example system consists of a triplex set of processors with one spare processor,
a triplex set of memory units, and a quadruplex bus, as shown in Figure 8. All messages
and calculations performed in the system are subject to majority voting to detect and mask
failures. Thus, a majority of the processors in the current configuration must be working, or
system failure occurs. Similarly, a majority of the memories and a majority of the buses must
be working. Upon detection of the first processor failure, the spare processor is brought into
the configuration to replace the faulty processor. Upon the second processor failure, the faulty
processor is removed and the remaining two working processors continue in duplex mode. Failure
of one of the remaining two processors is assumed to immediately defeat the majority voter.
Each memory unit is attached to one of the processors, and removal of a failed processor also
results in removal of its attached memory. The memory units degrade from triplex to duplex
to simplex as failed memory units are detected in the configuration or are removed because of
processor removals. The bus is non-reconfigurable.

MEM

PROC

QUAD
BUS

MEM PROC PROC MEM

 soare
/_ PROC 7

LLLLLLL L

Figure 8: Example System

During the system description process, the user assigns names to identify the components in
his system and defines any extra constants or state-space variables he might need. Except for
special identifiers that are used by ASSIST and SURE, these identifiers are only meaningful
to the user—the TOTAL program makes no implicit distinction between the behavior of a
“processor” component, a “bus,” or a “foobar.” The user can input all rates and times to the

8

program in whatever units (hours, minutes,...) he wishes, as long as he is consistent. However,
the default mission time in SURE is 10 and must be changed if 10 units is not the desired
mission time. The change can be made by editing the ASSIST output file to define “TIME =

value;” after generating it and before running it.

The following subsections detail how this example system can be described using the TOTAL
interface.

3.1 Spare Pools

Spare pools are pools of spare components that can be used to replace multiple types of failed
components. Consider, for example, a system that contains two triads of processors that share
a pool of spare processors. The spare processors would be described in the Spare Pools table
and given a name, such as “pspares”. The two triads would then be described as two separate
component types in the Components Table, and each would have “pspares” listed as a source
of pooled spares.

The menu used for describing a pool of spares is shown in Figure 9. The inputs are as follows:

e Poolname — Name of the pool, maximum 8 characters

e Size — Number of components in pool initially

Failure rate — Failure rate for components while spares

Probability of detection —— Probability that a failure will be detected before the com-
ponent is brought into an active configuration (note that this shows up only when the
detectability is set to “Partially”. See Figure 11.

T il

G eataréait Pooi of Spares bl A

pool name: :j detectability:
& Never & Partially & Fully
S —

Figure 9: Menu Panel for Describing Pool of Spares

Since our example system does not contain any spare components that are shared between more
than one subsystem, the system description will not contain any spare pools.

3.2 Components

The example system description will contain three entries in the Components table: processors,
memories, and the bus channels. To input the first entry, select the Append option from the
Edit menu beside the Components table. Figure 10 shows the component configuration panel
filled in with the correct information to describe the processors subsystem.

repetition factor:

Component Name: ;
v lipleto e

redundancy count; E::l v Duolel o ceic

Jonenttent 27

detectability:
< Never & Partially 49 Fully

Failiure rate:

Figure 10: Component configuration for “processors”

The menu panel selection fields are as follows:

e Repetition Factor — Number of subsystems of this type. The repetition feature is not
supported in Version 1.0, so the default value of 1 must be used. In later versions, this
will provide a convenient way to specify systems containing multiple similar subsystems,
such as systems with multiple triads.

o Component Name — Name used to identify this subsystem. May be as long as 16
characters, however, the first 8 characters® should be unique.

3TOTAL generates constant identifiers by using various prefixes of up to four characters each for constants.
The SURE program requires the first 12 characters of an identifier to be unique. Although some IMPLICIT
prefixes are five characters long, these do not affect the SURE model file, so eight unique characters for a name
guarantees uniqueness of the model.

10

Redundancy Count — Number of components in each subsystem of this type.

Degradable — Description of how this component degrades when component failures
occur after any available spares have been exhausted. One of the following predefined
degradation strategies must be chosen. The default is Non-degradable.

— Non-degradable — No components are ever removed from the subsystem.

— Triplex to duplex to simplex — Components are removed from the subsystem one
at a time as they fail. Thus for a hexad, this selection would be hexad to quintad to
quadruplex to triplex to duplex to simplex.

— Triplex to simplex — Components are removed from the subsystem one at a time
as they fail until a triplex is reached. Failure of one component of a triplex results in
removal of the failed component plus one other component, leaving a simplex. Thus
for a hexad, this selection would be hexad to quintad to quadruplex to triplex to
simplex.

— Duplex to zero — Components are removed from the subsystem one at a time until a
duplex is reached. On the next component failure, all of the components are removed.
Thus for a hexad, this selection would be hexad to quintad to quadruplex to triplex
to duplex to zero. This selection is useful for self-checking pairs.

The logic and mathematics for degradable components is discussed in detail in Section 5.2
on page 42.

Transients? — Select this box if you wish to model transient faults as well as permanent
faults.

Intermittents? — Intermittents are not supported in Version 1.0.

Dedicated Spare Count — The number of spares dedicated to this subsystem only. Note
that dedicated spares cannot be shared across replicated subsystems; they are dedicated
to a specific subsystem. Dedicated spares will be substituted for failed components before
pooled spares. The logic and mathematics for spares is discussed in detail in Section 5.1
on page 41.

Primary Spare Pool — If failed components of this subsystem can be replaced by spare
components from a spare pool, the name of the first pool they will be taken from is listed
here. Any dedicated spares for this subsystem will be used before the primary spare pool.
The logic and mathematics for spares is discussed in detail in Section 5.1 on page 41.

Secondary Spare Pool — If the name of a secondary spare pool is given here, then after
the subsystem has used all of its dedicated spares and primary pool spares, then subsequent
failed components will be replaced with components from the secondary spare pool. The
logic and mathematics for spares is discussed in detail in Section 5.1 on page 41.

Tertiary Spare Pool — This is the name of the third spare pool to be used after all
dedicated, primary pool, and secondary pool components are exhausted. The logic and
mathematics for spares is discussed in detail in Section 5.1 on page 41.

11

Since there is only one set of triplex processors in our example system, the repetition factor
is 1. The component name of “processors” is entered. The redundancy count is 3 because
there are 3 components in the “processor” subsystem. The subsystem always degrades by one,
so degradation from “triplex to duplex to simplex” is selected. Permanent faults are always
modeled, and for this subsystem modeling of transient faults is also selected. Since there is one
spare processor, the dedicated spare count is 1. As soon as a non-zero dedicated spare count
is chosen, another panel appears for describing the dedicated spares for that subsystem. The
Dedicated Spare Details panel contains the following items:

e Detectability — Whether the system can detect that spares have failed and remove them
from the available spares is specified by choosing one of the following:
— Never — The probability of detection that a spare has failed is zero.

— Partially — If this selection is chosen, an additional panel immediately appears for
the user to input the probability of detection, as shown in Figure 11.

— Fully — The probability of detection that a spare has failed is one; i.e. the system
can determine with 100% success that a failed spare is bad and will not use it.

e Failure rate — The failure rate for dedicated spares.

repetiton factor 17
Componere Neme [racessors 1

e Y

;
& =

Figure 11: Partially detectable dedicated spare failures

For our example system, the spare is assigned an exponential failure rate? of 6.113 x 1074, and
“Fully” detectability is chosen because it is assumed for this system that failures of the spare
are always immediately detected. The example system contains no pooled spares, so no spare
pool names are specified.

After clicking on the “Okay” button, a panel appears for specifying the rates pertinent to this

subsystem, as shown in Figure 12. The items that can appear in the panel are as follows:

o Permanent fault arrival — The exponentially distributed arrival rate for permanent faults
for this component type.

4All rates must be input in “e” exponential format. For example, 6.113 x 10~% must be input as 6.113e — 4.

12

¢ Rate to remove and/or break up — The rate to degrade the subsystem configuration as
specified in the “Degradable” section of the Component Configuration panel once all spare
components have been exhausted.

e Rate to reconfigure in a spare — The rate to replace a failed component with either a
dedicated spare or a pooled spare.

e Transient fault arrival — The exponentially distributed arrival rate for transient faults
for this component type.

o Transient fault disappearance rate —» The rate at which transient faults and their effects
disappear from the system for this component type.

The user will only be prompted for the items that pertain to the subsystem specified; for
example, the user will only be prompted for transient fault arrival and disappearance rates if
he specified that transients faults were to be modeled. Permanent and transient fault arrival
rates are slow exponential rates, and are defined by simply giving a rate in real or exponential
notation, such as “le-4”. The rates for degradation, reconfiguration to bring in a spare, or
disappearance of transient faults are fast rates. These fast rates may be given in one of two
formats: 1) by giving the mean and standard deviation of the distribution within angle brackets,
such as “< 3.6e — 3,3e — 3 >”, or 2) by simply giving the rate for an exponentially distributed
transition, such as “6.5e5”. If the rate is given, the mean and standard deviation used for this
transition will both be equal to the inverse of this rate. Figure 12 shows the specification of
rates for component “processors” of the example system.

For any component type that can fail with transients, all reconfiguration rates must be input
by giving rates for exponential distributions. This is necessary because TOTAL cannot model
competing nonexponential transitions, and this requirement is enforced by the rates panel.

After clicking on the “Okay” button on the rates panel, the component specification menus will
disappear and all changes will be reflected in the tables.

The memories and bus subsystems are specified in a similar manner. The memories subsystem
description is identical to the components specification, except that the dedicated spare count is
not set to 1. To specify that there are no dedicated spares, the user can just leave the dedicated
spare count box empty (and TOTAL will use the default value of 0) or he can enter a 0 in the
box. Since the subsystem has no dedicated spares, the menu for specifying these details does
not appear.

The description for the bus subsystem is shown in Figure 13. Since the bus is a non-reconfigurable
quadruplex, the redundancy count is 4 and “Non-degradable” is chosen. Transients are not se-
lected since transient faults of the bus will not be modeled. The bus has no dedicated spares.

After clicking on the “Okay” button, the rate specification panel for the bus subsystem appears,
as shown in Figure 14. Since transient bus faults will not be modeled and the bus has no spares
and is non-degradable, the rate specification panel only prompts for the input of the permanent
failure rate for this component.

13

Permanent fault arrival rale
LP[720-4

Rate 1o remove and/or break up
R_D [3855203

Aate to reconfigure in a spare
R_S [3552¢3

Transient fault amval rate
LT [Ne-4

Transient Faull disappearance rate

ois: [55e5

. . fegradable
repetition factor:} 1 | @ [on-degadable

Component Name: @:] v Tripies e duple: o sinples

v lripleto simples
redundancy count: | 4 l v Luplertocero

 rransient

_dintermittents”!

Primary Spare Poot

secondary Lpare Pool

Tertrey, Upare Pool

Figure 13: Component configuration for “bus”

14

Permansen! fault arrival rale
L_P: [2.2020-3

P18 D 1EROYE ST 18AY U
A.D [

EXCRENT-RGIE DN R I BT)
K 5 [

Toanseenl faud aisval als

L

Translart Faull diseppaaancs e

(-\E‘[

Figure 14: Component rates for “bus”

15

3.3 Dependencies

The Dependencies section allows the user to specify any dependencies in the failure behaviors
between subsystems in the system. Each dependency has one or more triggering events and
one or more effects. A trigger event might be permanent or transient failure of a component,
replacement of a component with a spare, or removal of a component. An effect of a dependency
might be the failure or removal of a component, or the incrementing or decrementing of a value
in the model. As will be shown in a later section, the user can define extra state-space variables
to be included in the model. The user can then define dependencies that cause the values of
these variables to be changed. This can be useful for describing a system with various “modes”
of operation.

Dependencies can be either conditional or unconditional. Conditional dependencies are only in
effect under certain conditions of the system. Each dependency has exactly one cause and can
have either a single effect or multiple effects. For example, if we were to model a system in
which a processor was the master of a bus, then failure of that processor would cause (at least
temporary) failure of the bus.

There is one type of dependency that must be described about the example system—because
the memories are connected to the processors, removal of a faulty processor causes removal of
the memory unit attached to it. The dependency between each memory unit and its processor
must be specified; removal of processor 1 causes removal of memory 1, removal of processor 2
causes removal of memory 2, and removal of processor 3 causes removal of memory 3. These
dependencies are unconditional, because they are always in effect regardless of the system con-
figuration.

To describe the first dependency, select the “Append” option from the Edit menu next to the
Dependencies table, and the Dependency Specification panel will appear. This panel contains
the following items:

e Conditional/Unconditional Buttons — Specifies whether this dependency is always in
effect (unconditional) or only in effect under certain conditions or configurations (condi-
tional). If Conditional is chosen, a menu appears for specifying the condition or set of
conditions under which this dependency is in effect.

e Cause — Specification of what conditions cause this dependent behavior to trigger. The
entries for specifying the cause are as follows:
— Component Name: — Name of component type.

— [,] — Which component of this type triggers this dependency. Default is blank (un-
specified), which means that any component of this type can trigger this dependency.

— One of the following must be chosen to specify what behavior(s) of the specified
component causes the dependency to trigger:

+ failure — Triggers on arrival of any applicable failure of the component (per-
manent or transient).

16

arrival of permanent — Triggers on arrival of permanent failure of the com-
ponent. Since arrival of permanent includes both working-to-permanent and
transient-to-permanent transitions, this option can only be chosen if transient
faults are modeled for this component.

arrival of transient — Triggers on arrival of transient failure of the component.
removal — Triggers on removal of the component from the configuration because
of degradation. Replacement with a spare component is not considered removal
of the component.

recovery — Triggers on replacement of the component with a dedicated or
pooled spare regardless of whether that spare swapped in is working or has failed.
Also triggers on degradation of the component by removal of a faulty component.

disappearance of transient — Triggers on disappearance of transient failure
(and its effects) from the component.

o Effect X of Y — Listing of effect(s) of this dependency. The X is the index of the effect
currently shown, and the Y is the total number of effects listed for this dependency. The
entries for specifying each effect are as follows:

— Component Name: — Name of component type or variable affected by this depen-
dency.

— [,] — Index to component of this type (or variable array) that is affected by this
dependency. Default is blank (unspecified), which means that all components of this
type are affected with equal probability by this dependency. An equal sign (“=")
may also be used to indicate that the same index value is to be used as the index of
the component that triggered the dependency.

— If the effect is on a component (as opposed to a variable), one of the following must
be chosen to specify the effects of this dependency on this component:

*

*

failure — Causes the component to fail permanently.

removal — Causes the component to be removed from the current configura-
tion. The number active is always decreased with a removal effect, regardless of
whether of the presence of any spares. If the user desires a spare to be swapped
in, then a failure effect should be used instead. Transitions to replace failed
processors with spares are automatically generated by TOTAL when spares are
present in the system description.

transient disappearance — Causes the disappearance of any transient faults
currently experienced by this component.

— If the effect is on a variable (as opposed to a component), one of the following must
be chosen to specify the effects of this dependency on this variable:

*

*

*

++ — Causes the value of the specified variable to be incremented by one.
—— — Causes the value of the specified variable to be decremented by one.

=0(false) — Causes the specified variable to be set to 0 if integer or to false if
Boolean.

17

+ =min — Causes the specified variable to be set to the minimum value allowed
for the variable.

+ =max — Causes the specified variable to be set to the maximum value allowed
for the variable.

+ =1(true) — Causes the specified variable to be set to 1 if integer or to true if
Boolean.

The Dependencies panel also includes the following buttons:

¢ Quit — Quit entering or editing this dependency without making the specified changes

e Last Effect — Display the previous effect specified for this dependency (i.e. move from
displaying Effect M of N to displaying Effect M-1 of N).

e Next Effect — Display the next effect of this dependency (i.e. move from displaying
Effect M of N to displaying Effect M+1 of N).

¢ Edit — Menu for appending, copying or deleting effects of this dependency.

The panel for specifying the conditions under which a dependency takes effect has the following
entries:

e Component Name — Name of component type.

»

e [] — Which component of this type triggers this dependency. Default index is “=
or blank (not applicable), which means that any component of this type can trigger this
dependency.

e If an index is given, then one or more of the following must be chosen to specify the
condition of the specified component that must be effect for this dependency to occur:

— failed — This dependency can only occur when the specified component has failed
(either permanent or transient) but is still in the active configuration (has not been
replaced by a working spare component or removed through degradation).®

— permanent fault — This dependency can only occur when the specified component
has failed permanently but is still in the active configuration (has not been replaced
by a working spare component or removed through degradation).®

— transient fault — This dependency can only occur when the specified component
is experiencing a transient fault and is still in the active configuration (has not been
replaced by a working spare component or removed through degradation).”

— removed — This dependency can only occur when the specified component has been
removed from the active configuration through degradation.®

SFA[ix]
SFP[ix]
TFT[ix]
SNOT Alix]

18

e If an index is not given, then one of the following must be chosen to specify the condition
of the specified component that must be effect for this dependency to occur:

majority vote failure — This dependency can occur only when a majority of the
active parts in the component have failed.’

exhaustion of parts — This dependency can occur only when all of the parts in the
component have failed.®

working < n — This dependency can occur only when the number of working
parts in the component is less than “n”."!

removed > n — This dependency can occur only when the number of parts
removed from the component is greater than “n”. The number of parts removed
from a component is defined to be the difference between the number initially and
the total active which remain in the configuration.'?

failed > n — This dependency can occur only when the number of failed parts

still active for the component is greater than “n”.'3

permanent failed > n — This dependency can occur only when the number of

permanent failed parts still active for the component is greater than “p” 14

transient failed > n — This dependency can occur only when the number of
transient failed parts still active for the component is greater than “p” 15

textual — This dependency can occur only when the textual ASSIST syntax
Boolean expression holds true. The syntax of the expression is not checked for valid-
ity, however, TOTAL does enforce balancing of parentheses within the expression.

e n — If one of the above bullets which reference a value for “n” is selected, then the value

[13%e)

to be used for “n” must be entered here.

e negate this one — Causes the negation of this condition to be used, e.g. changes “#
working < n” to “not(# working < n).”

e negate whole IF condition — Causes the negation of the entire IF. (e.g., “not ((#
working < n) and (transient fault))”).

The Conditionals panel also includes the following buttons:

e Last

Condition — Display the previous condition specified for this dependency (i.e. move

from displaying Conditional M of N to displaying Conditional M-1 of N).

STFA >= TWA
10TWA <=0

UNW < n

12(NI-TA) > n

I3NF > n

HWNFP > n
ISNFT > n

19

e Next Condition —» Display the next condition of this dependency (i.e. move from dis-
playing Conditional M of N to displaying Conditional M+1 of N).

e Edit — Menu for appending, copying or deleting conditions of this dependency.

For the example system, the “Kind” of dependency is specified as unconditional, because it is
always in effect regardless of the system configuration. If we were describing a dependency that
was only in effect when certain system conditions were true, we would select conditional, and a
menu would appear for describing the system conditions that must be true for this dependency
to be in effect. The dependency specification panel to show that removal of processor 3 causes
removal of memory 3 is shown in Figure 15.

G erendoncy Specinicution NNNETAEESS

EFANTR LR AR

Kind: Cause: Effect1of 1.
@ Unconditional)) . '
& Conditional Component Name: 1 processors i [.}{3] Comoonent Name: EE."W”” 1.3 (3]
€ is failing & arival of permanent <> arrival of transient & failure @ removal O disappearance
& is being remavea € is recovering 7 is disappearing
o - O
© einiiny @ vitlines
Q row Q@ wux
LastEflect | [NextEffect | Okay

Figure 15: Specification of third dependency

Since the second dependency is similar to the first, we will use the Copy option of the Dependency
Edit menu to specify the second dependency. When the Dependency Specification panel appears,
it already has the information specified for the first dependency, and we have only to change
the two 1’s to 2’s and select the “Okay” button to input this dependency. Similarly, the third
dependency can be input as a modification of the second.

3 TR i l
Kind: Cause: Effect1of 1:
4 Unconditonal Component Name: i processors | [y] Comoonent Name: | it 103]
© Canditiona processors 2 . [memories O -
© is failing & arrival of permanent < arrival of transient & failure @ removal < disappearance
@ is being removea < s recovering 7 is disappearing :
o - Q1
QO i @ alixt
Q wm O mux
LastEffect | [NextEffect |

Figure 16: Concise Specification using “=" to denote “same index”

Alternately, we could have input our example system with a single dependency using the “="

‘0 the effect to denote “use the same index” as used in the cause. This is illustrated in Figure
16. Note that the index on the cause is left blank unless a specific index value is given. The
“=" is illegal in the cause as illustrated in Figure 17.

20

P R R R i :
Kind: Cause: Effect 1 of 1:

Unconditional
z Con:; on:ln Component Name: [processors ¢ LEi= —] Component Neme: [Fremories L 1
© failure @ remova $ disappearance

O -~ Q
0oy @ s1Us
sowwgre [
[LastEfiect | [NextEfiect | |

|Qu|tl

Figure 17: Index of “=" Belongs only on Effect

3.4 System Failure Conditions

The conditions leading to system failure are defined in terms of functions of the states of the
components in the system, for example, majority vote failure of subsystem A or exhaustion of
parts in subsystem B. The menu interface presents a list of functions to choose from, or the user
may elect to input a textual description. The interface also allows the user to define system
failure conditions that are functions of several conditions; for example, a given system may fail
if both the primary memory fails a majority vote and the backup memory has failed. Using the
menu-driven interface, the user creates a list of independent conditions, any one of which will
cause system failure. In the table, each system failure condition in TOTAL is referred to as a
“DEATHIF” condition, named for the ASSIST statement of the same name.

For the example system, we will define three system failure conditions: majority vote failure of
processors, majority vote failure of memories, and majority vote failure of the bus components.
The three conditions are independent in the sense that system failure occurs if any one of the
three conditions holds. To describe the first condition, select the Append option from the Edit
menu beside the System Failure Conditions table, and the System Failure Description panel
will appear. Figure 18 shows the System Failure Description panel filled in with the correct
information to describe majority vote failure of the processor subsystem.

The System Failure Descriptions panel contains the following fields:

e Component Name — Name of component type.

e [,] — Which component of this type triggers this death specification. Default index is
“=" or blank (not applicable), which means that any component of this type can trigger
this death specification.

e If an index is given, then one or more of the following must be chosen to specify the
condition of the specified component that must be effect for this death specification to
occur:

— failed — This death specification can only occur when the specified component has
failed (either permanent or transient) but is still in the active configuration (has not

21

R Deatiit” Specification; R

Death AND Condition 1 of 1:

Component Name: | processors | ()] |

& tailed © nermanent fauit @ fransient fauit
Q removed
& majority vote fallure < exhaustion of parts

© # working < n { # removed > n
< #falled > n & # permanent failed > n
< #transient failed > n > textual

[]

asprassion apphe abde for tezdual oftua,

L |

[1 negate this one £J negate whole DEATHIF

[Qut] [LastDeath | [NextDeath | |[Okay]

Figure 18: System Failure Description for Majority Vote Failure of Processors

been replaced by a working spare component or removed through degradation).!®

— permanent fault — This death specification can only occur when the specified com-
ponent has failed permanently but is still in the active configuration (has not been
replaced by a working spare component or removed through degradation).!”

— transient fault — This death specification can only occur when the specified com-
ponent is experiencing a transient fault and is still in the active configuration (has
not been replaced by a working spare component or removed through degradation).!®

— removed — This death specification can only occur when the specified component

has been removed from the active configuration through degradation.®

e If an index is not given, then one of the following must be chosen to specify the condition
of the specified component that must be effect for this death specification to occur:

— majority vote failure — This death specification can occur only when a majority of
the active parts in the component have failed.?

— exhaustion of parts — This death specification can occur only when all of the parts
in the component have failed.?!

15FA[ix]

1FP[ix]
18FT(ix]

1SNOT Alix]
20TFA >= TWA
HTWA <=0

22

— # working < n — This death specification can occur only when the number of

working parts in the component is less than “n”.??

— # removed > n — This death specification can occur only when the number of parts
removed from the component is greater than “n”. The number of parts removed from
a component is defined to be the difference between the number initially and the total
active which remain in the configuration.?®

— # failed > n — This death specification can occur only when the number of failed

parts still active for the component is greater than “n”.%¢

— # permanent failed > n — This death specification can occur only when the number
of permanent failed parts still active for the component is greater than “p” 2

— # transient failed > n — This death specification can occur only when the number
of transient failed parts still active for the component is greater than “n” 26

— textual — This death specification can occur only when the textual ASSIST syntax
Boolean expression holds true. The syntax of the expression is not checked for validity,
however, TOTAL does enforce balancing of parentheses within the expression.

e n — If one of the above bullets which reference a value for “n” is selected, then the value

to be used for “n” must be entered here.
e negate this one — Causes the negation of this condition to be used, e.g. changes “#
working < n” to “not(# working < n).”

e negate whole DEATHIF — Causes the negation of the entire IF. (e.g., “not ((# working
< n) and (transient fault))”).

Each panel holds one condition description. The user may conjunctively link together as many
conditions as he wishes to form a complex system failure specification. This is accomplished
using the Edit menu located on this panel. The user may view the multiple conditions that
make up a single complex specification by using the “Last Death” and “Next Death” buttons
to move through the specification. Note—Individual DEATHIFs are “OR’d” together and are
specified using the Edit menu on the System Description panel. The multiple conditions within
a single DEATHIF are “And’d” together and are specified using the Edit menu located on the
Deathif Specification panel.

To specify that majority vote failure of the processors is assumed to cause system failure, specify
processors for the component name, select majority vote failure, and select the “Okay” button.
System failures due to memories or buses failing majority votes are specified in a similar manner
using either the Append or the Modify option of the Edit menu on the System Description
panel.

The complete system description is shown in Figure 19.

22NW < n
2(NL-TA) > n
2ANF > n
25NFP > n
26NFT > n

23

prob-of detection

| failure-rate
Spare Pools:
1] ame redund [trans/int |degrad || dedicated-spares 1s:
Components:
processors 3| trans 3-2-1 1 6.113e-4 Full
Edit memor ies 3| trans 3-2-1 0
bus q non 0
.
[condition: cause -> effect

Dependencies:
REM(processors{i}) -> REM{memories[1]})
REM(processors[2]) -> REH(memoriesEg%;

REM(processors(3]) -> REM(memories

Edit

[

System Failu
Y re DEATHIF MAJ(processors)

Condttions: || pDEATHIF MAJ(memories)
DEATHIF MAJ(bus)

Edit

Figure 19: A sample system modeled with TOTAL

24

3.5 Display of System Definitions

The user can elect to see the System Definitions that will be written to the ASSIST output
file in an additional panel, which appears at the bottom of the screen so as not to obscure the
System Definitions panel. To bring up the additional panel, select the option to “Show System
Definitions” from the “Opt’s” options menu, as shown in Figure 20.

pooiname [size silure-rate prob-of-detect ion
Spare Pools: I ’
[l p— = o
. T Jhams redund[Erans/int|Hegrad || dedicated-spariohe¥ System Definitions

é 6.113e-4 0L

j processors j| trans 3-2-1
1) memories j| trans 3-2-1
Yibus L non o

B . Joondition: cause -> effect
AEM(processors(1]) -> REM({mewories{i])
REM proculont2 g -> REM(memories|2])
REM(processors() -> REM(memories{3])

B ——————

System Fallure
RATHIF MAJ(processors)
conaons: [Rearuir Yo7 (Remor o8y
- DEBATHIP MAJ(bus)

Figure 20: Using pull-down menu to show system definitions

After the panel appears on the screen, the screen will appear as shown in Figure 21.

3.5.1 Adding auxiliary state-space variables

The user can define additional state-space variables and can change their values as effects of
dependencies. User-defined state-space variables can be used in system failure conditions or in
triggers or conditions of dependencies. To add user-defined state-space variables, the Edit menu
on the System Definitions panel is used.

Figure 22 shows how the user would enter an additional state-space variable named “test”, which
is an array of Boolean’s. The optional identifier applies when there is either an array range or
a range of values or both. It does not apply for Boolean scalars (non-arrays) selected. If the
array were, for example, to contain an array of 1..24, then the user could specify a name for
the upper bound of 24. The initial value is used in the corresponding START statement in the
generated ASSIST output file.

3.6 Writing Comments and/or Remarks to describe a system

The user may describe a system by selecting the option “System Description Comments and/or
Remarks” from the “Opt’s” options menu, as shown in Figure 23. Some sample remark input

25

iSystem D

[poolname || size | failure-rate prob-of-detection
Spare Pools:
Edit Flle Opt's
§ |pame redund |[krans/ int [degrad {[dedicated-spares 1s:
Components: jr—1
1] processors 3| trans 3-2-1 1 6.113e~-4 Full
Edit Y| memories 3| trans 3-2-1 0
1}| bus 3 non 0
Dependencleslcondition: cause -> effect
REM(processors{l]) -> REM(memories(1])
Edit REM(processors(2]) -> REM(memories{2})
REM(processors{3]) -> REM(memories([3])
System Fallu're DEATHIF MAJ(pr-o-cessors)
Conditions: || pEATHIF MAJ(memories)
DEATHIF MAJ(bus)
Edit

Space Constants: Stats Space Variables:

Prune_After = 4; (* Prune aft. SPACE =

NI_processors= 3; (* Redundanc' (.

NsT_processors= 1; (* Dedicated (¥_processors : ARRAY(1..NI processors} OF BOOLEAN), (*+ Each working in

NI memories = 3; (* Redundanc (FP_processors: ARRAY([1. .NI_processors) OF BOOLEAN), (* Each permanent f{

NI Dbus - 45 (* Redundanc (PT_processors: ARRAY{1. .NI_processors] OF BOOLEAN), (* Each transient f

NIOT = NI roceséors + NSI proce: NWS_processors: 0. .NSI processors, (* dedicated Working spares count,
P P ! NPS_processors: 0..NSI_processors, (4 dedicated Failed spares count,

. ARRAY[1T.NI_memories] OF BOOLEAN), (* E working in *a

(V_memories
. ARRAY[1..NI_memories) OF BOOLEAN), (* Each permanent tai

(FP_memories

|Rate Constants:

_P_processors=
_D_processorse=
R_S_processors=
L_T_processors=
DIS_processors=

1.2e-4;

3.552e3;
3.552e3;
1e-4;
o.5eS;

(* Perma:
(* Rate
(* Rate
(*# Trans:
(* Rate :

more space |

(* Number of component failurss for PRUNEIF

Figure 21: Workstation with both System Description and Definitions panels present

26

......................................

. optional

range name

M Array? arrayrange: [1 |- [17]

M Boolean? or range:|] < []
START value: [TRUE < FALSE
4 TRUE

Quit =

Figure 22: Defining an extra state-space variable

is shown in Figure 24.

27

pod1nane size fallure-rate prob-of~detect {on
Spare Poois:
= ki
4Sst Code tion €
1 |pame redund [k rans/ int [Hegrad || dedicat ed-spar ?MSymm
C tem Description C and/or Remarks|
{l| processors 3| trans 3-2-1 1 6.113e-4 L4
Yl mamories 3[trans 3-2-1 o
1| bus L non 0

condition: csuse -> affect

REM(processors(1]} -> REM(memories[i])
RAEM(processors(2]) -> REM(memories|2})
REM(processors{3)) -> REM(memories{3])
|
System Falurs

DEATHIF MAJ(processors)
DEATHIF MAJ(memories)
DEATHIF MAJ{bus)

| -

Figure 23: Using pull-down menu to specify comments and/or remarks

Extra remarkes and/or comments

is example system consists of a triplex set of p
Processor, a triplsx set of memory units, and 2

rocessors with one spare
adruplex bus.

All messages

and calculations performed in the system are »

detect and mask failures. Thus,
configuration must be working, or
majority of the memories and a ma

ul:}..“ to majority voting to
a majority of the processors in the current
system failure occurs. Similarily, a

ority of the buses must be working. Upon

ailure, the spare processor is brought into
the configuration to replace the faulty processor. on the second processor
failure, the faulty processor is removed and the remaing two working
processors continue in duplex mode. Failure of one of the remaining two
vorking processors is assumed to immediately defeat the majority voter.
memory unit is attached to one of the processors and removal of a failed

detection of the first processor %

fach

Figure 24: Input of extra remarks/comments

28

4 Generating and Solving the Reliability Model

Once the system description process is complete, the user can generate the ASSIST input de-
scription for his system and even execute the ASSIST and SURE computer programs directly
from the TOTAL menu-driven interface. Several model-reduction techniques, such as pruning
and trimming, are available through the TOTAL interface[6, 7].

4.1 Algorithm for Generating ASSIST-Language Description

As shown in the preceding section, the TOTAL menu-driven interface presents the user with a
set of choices for describing the characteristics of his systems. The TOTAL program generates
an ASSIST-level description of the system by executing a set of algorithms based on the system
description information. The ASSIST language description is made up of the following basic
elements: 1) a set of state-space variables, which are used to describe the states of the model; 2)
a description of the initial state of the model; 3) a set of transition-description statements that
define the legal transitions between states in the model; 4) a set of system failure conditions
for the model; and 5) a set of constants and variable definitions that are used in the transition-
description and system failure statements. The basic algorithm used by TOTAL for generating
an ASSIST-level description of the system is as follows.

First, the TOTAL program generates the state-space variables, constants, and variable defini-
tions needed to represent the behavior of the components in the system. As an example, the
“processors” subsystem of the example system described above is degradable and has a spare
that can fail, and both permanent and transient faults can be modeled. Thus, the ASSIST
description would need state-space variables to represent the number of working processors in
the active configuration, the number that have failed permanently, the number that have failed
due to a transient fault, and the number of working and failed dedicated spare processors. Sev-
eral constants would be defined for the “processors” components; for example, permanent and
transient failure and recovery rates.

The next step is to generate transition-description statements to represent the failure behavior
for each component in the system. Several transition-description statements are needed to
describe each of the component types in the system. For example, the “processors” components
can fail permanently or with a transient fault, the transient faults can disappear, failed processors
can be replaced with the dedicated spare, and once the dedicated spares are exhausted, the
subsystem recovers from failures by degradation. Each of these behaviors is captured in a
separate statement. The dependencies must also be included in these statements. For example,
the statement that represents removal of processor 1 must also remove memory 1 from the active
configuration.

Finally, the system failure conditions for the model are described in the ASSIST language. This
simple process consists of replacing each function in the TOTAL description with its underlying
formula in ASSIST. For example, the majority vote function name used in TOTAL is replaced
with a formula checking whether the number of working processors in the active configuration
is greater than the number of failed processors in the active configuration.

29

As shown in the above description, the process of generating the ASSIST description depends
on a set of algorithms for converting the information from the system description tables into
an appropriate ASSIST representation. The correctness of this process lies in the generality
of the individual algorithms. In other words, the algorithm for generating ASSIST transition-
description statements to reflect replacing a failed component with a spare must work correctly
for all possible combinations of characteristics that are allowed in the TOTAL system description.
It must take into account all possible combinations of dedicated and pooled spares, spare failure
rates and detectability, and all possible dependencies that might be involved. This can be
especially difficult in the presence of conditional dependencies.

The approach adopted for the development of TOTAL has been to start with a limited set
of choices and to carefully analyze the generality of each added feature and its accompanying
algorithms. By doing so, we hope to preserve the correctness of the model generation process.
We also plan to document the algorithms used so that the user will know exactly what assump-
tions are in the model and so that the algorithms can be independently checked for accuracy
and generalism. Of course, any computer program will contain bugs, so users are cautioned
to check the ASSIST model description for reasonableness and accuracy. Also, analysis of the
generality of algorithms will grow increasingly difficult as the complexity of the system descrip-
tion choices grows. The example used in this paper was relatively simple, yet the ASSIST file
generated by TOTAL was 692 lines long, including comments. As the number of components
and the complexity of failure behaviors grows, reliability model descriptions tend to increase
combinatorially.

The TOTAL program is significantly limited in terms of the characteristics of systems it can
model accurately; however, the user will know when he has reached those limitations because
the menu interface will not include those characteristics.

4.2 Naming Conventions Used During Generation

When TOTAL generates an ASSIST input model file, it generates names with a prefix and a
suffix. The prefix always ends with an underscore character(”.”). The suffix is always the name

of the component or spare pool in question.

The prefixes used are shown in Tables 1 and 2. Only those prefixes that are applicable to
the component type are defined; however, they are defined whether or not they are referenced.
For example, if transients are not being modeled, then none of the prefixes that apply only to
transients will appear. If, however, transients are modeled, then all of the prefixes that apply to
transients will be defined regardless of whether or not they are referenced. This is because the
user may wish to reference them directly by name in textual DEATHIF and textual dependency
condition tests.

Some of the other variables and/or constants that are defined are listed in Table 3;

30

| prefix | meaning

NI The number of parts initially active in a given component.

NSI. | The number of dedicated spares initially active in a given component
or the number of spares initially active in a given spare pool.

TSI. | The total number of spares (both dedicated and pooled) initially avail-
able for use by a given component.

TFA_ | Count of Total Failed Active for a given component.

TWA_ | Count of Total Working Active for a given component.

NF_ | Count of Number Failed Active for a given component.

FA_ Failed Active for each part of a given component.

A Active for each part part of a given component.

TA. Count of total Active for a given part of a component.

TS. Count of total number of spares available for use by a given component.
This includes both dedicated and pooled spares. Do not confuse NS_
and TS_ for a component.

NA_ | Count of the total number active in a component.

NW_ | Count of the total number active and working in a component.

NFP_. | Count of the total number active yet failed permanently in a
component.

NFT. | Count of the total number active yet failed transiently in a component.

NWOT.- | Count of the number of active working or failed transiently which have
not failed permanently.

WOT. | Indicates whether active and either working or failed transiently for
each part of a given component.

NFS. | Count of the number of failed hot or warm spares either in a spare pool
or in the dedicated spares for a component.

NWS_ | Count of the number of working hot or warm spares either in a spare
pool or in the dedicated spares for a component.

NFD. | Count of the number of failed hot or warm spares which have been
detected as having failed either in a spare pool or in the dedicated
spares for a component.

NFU_ | Count of the number of failed hot or warm spares which have not been
detected as having failed either in a spare pool or in the dedicated
spares for a component.

Table 1: Table of prefixes used in generated ASSIST file (Part I)

31

[prefix

| meaning B

NUC.

Count of the number of hot or warm spares which have not been de-
tected as having failed either in a spare pool or in the dedicated spares
for a component. This is effectively the number of spares under con-
sideration for the spare pool or the dedicated component spares in
question.

TUC.

Count of the total number of spares including both dedicated and
spared which have not been detected as having failed for a compo-
nent. This is effectively the number of spares under consideration for
the component in question.

NS.

Count of the number of spares either in a spare pool or in the dedicated
spares for a component. Do not confuse NS_and TS. for a component.

PRF.

Probability that a given spare has failed in either a spare pool or in the
dedicated spares for a component.

PRW._

Probability that a given spare is still working in either a spare pool or
in the dedicated spares for a component.

Table 2: Table of prefixes used in generated ASSIST file (Part II)

identifier meaning |
NCF The number of component failures
NCFMX The maximum possible component failure count. This is used as the
upper bound of the range of values for NCF.

NTOT The total number of parts in the system including all components, all
dedicated spares, and all spare pools. This is used to make assertions
that all parts be accounted for. This does not include any auxiliary
state-space variables.

Prune_After The number of component failures after which pruning should take

TRASH.CAN_SIZE

place

The number of parts which have been removed from the system, hence
the number of parts which have been discarded or “trashed”. This is
used to make assertions that all parts be accounted for. This does not
include any auxiliary state-space variables.

Table 3: Table of miscellaneous identifiers used in generated ASSIST files

32

4.3 Using the Menu-Driven Interface to Generate and Edit the
ASSIST-Language Description

To generate the ASSIST output file, select the option “Generate ASSIST” from the “File”
options menu. The ASSIST output file generated for our example system is shown in Appendix
D. After generating the ASSIST output file, the system editor can be used to view and perhaps
even edit the file before running it. To do this, select the option “Edit ASSIST” from the “File”
options menu. A new window will appear with the editor session as illustrated in Figure 25
taken from a VMS session.

File Edit Format Search Display Customize Help
C-OPTION WID=141; oI

(OIS BNRAESSNERRIXSN XSRS AQUEIBIXNNRXESSHRERSS)
(SSOEBNEEESENNNEITSUNRLEENENRIRIRIURSEESUIESAN)

(*=n sos)
(¥xs TABLE ORIENTED SYSTEM DESCRIPTION x)
(ses %)

(ll“'l.“llll".l..‘tll“l‘l.l“‘.l“l".‘.")
(“.‘..llt.l..‘lt“"!l“.‘.l.t‘tl‘ll.l“."“)

list of spare pools:

poolname size failure-rate prob-of-detection
hot 3 1.2e-4 Undetectable U
cold 12 n/a Undetectable A4

l@t_—_—__——lo

292 lines read from flle DISKSWAHDO: (DPB.S_RELIAB.S.TOTAL}SAMPLE. AST: 1

Figure 25: Editing the Generated ASSIST Code Under VMS

GENERATED

91;
IC_OPTION WRAP_LONG_CONSTANT_EXPRS:
COMMENT OFF;

Y Y T T T R R T YD)

{wun nen)
{uun TABLE ORIENTED SYSTEM DESCRIPTION wee)
{vun nen)
(nun)

()

This example system consists of & triplex set of processors with one spare
i processor, a triplex set of memory units. snd » quadruplex bus. All messages
and calculations performed in the system are subject to majority voting to
j detect and mask failures. Thus, a majority of the processors in the current
[l configuration must be working. or aystem failure occurs, Similarily. a
NER majority of the memories and a majority of the buses must be working. Upon
Ml"view.ast” 683 lines. 27514 characters

Figure 26: Editing the Generated ASSIST Code Under UNIX

When the user is in the middle of an edit session, the TOTAL program will not allow the user

33

IE_OPTION WL=40;
c_oPTION WID=191;
“OPTION WRAP_LONG_CONSTANT_EXPRS:

TABLE ORIENTED SYSTEM DESCRIPTION

([

This example system consists of a triplex set of processors with one spare

processor, a triplex set of memory units, snd a quadruplex bus. All messages

and calculations performed in the system are subject to majority voting to

detect and mask failures, Thus. a anorn‘:u TF the processors in the current
b or suyst

Figure 27: Editing the Generated ASSIST Code with EMACS

to exit. Figure 28 shows the system reminding the user to first quit the editor session before
quitting the TOTAL session.

poolname || size failure-rate prob-of -detect ion

Spare Pools:

| dedicated-spares 1s:
Components: Editer session is riil] axtivel Cannet quit.

ll,ﬁ.llio-l 0.664k7
= ¢

==

———eee———— —
b condition: cause =-> effect
" REM(processors[l]} -> REM(memories[1])
REM(processors 2!) -> REM(memories(2))
REM(processors(3}) -> REM(memories 3]}

System Failure

DEATHIF (MAJ(procassors))
Condions || DEATHIF (MAJ(memories))

' DEATRI? (MAT(bus))

=

Figure 28: Cannot Quit When an Editor Session is Still Active

4.4 Setting Generation Options and Values
The options and values used when generating the ASSIST output file are specified by pulling
down the “Opt’s” menu as shown in Figure 29.

The Set Generation Values/Options panel is shown in Figure 30 with the default values given
and in Figure 31 with the values used for the sample system. The panel contains the following
items:

34

[Systom Osecrigtion (TOTAL V18]

failure-rate prob-of detection

Set Code Opti
» ame redund [krans/int [Hegred || dedicated-spa m’:‘“-w
1 1 6.1130-4 Flum
1

andlor
i processors 3| trans 3-2- -
il mamor tes 3| trans 3-2- a
1) bus L non ¢
pr——————— —
o Jeondition: cause -> effect
REM(processors{i]) -> REM(memories{l))
REN(processors{2]) -> REM(memories{2))
REM(processors(l]) -> REM(memories(3])
| - —
Cﬂ

System Fellure —
EATHIF MAJ(processors)
Condiions: EATHIP W(Zwrhl)

- DEATHIF MAJ(bus)

Figure 29: Using Pull-Down Menu to Set Generation Parameters

Prune After Number of Component Failures: — Integer value representing the ASSIST
pruning level. The default is to assume system failure when 4 or more of the components
in the system have failed.

List TOTAL tables in ASSIST comments? — Include a printout of the TOTAL system
description tables in comments in the ASSIST-language file generated. The default is to
include this table.

Generate Assertions? — Include meaningful assertion statements in the ASSIST file
to check correctness of the ASSIST description. The ASSIST assertions are described in
detail in the ASSIST User’s Manual. Assertions can give the user insight into the meaning
of the ASSIST-language model descriptions, and may also be useful for uncovering possible
errors in the system description. The default is not to generate assertions.

Track Removed Components? — Create and update a variable (TRASH.CAN_SIZE) that
tracks the number of components removed from the active configuration. This variable
can be used in model pruning. The default is to track removed components.

Additional Trace Comments? — Provide additional comments in the ASSIST-language
description, such as noting the effects of dependencies on the TRANTO statements. The
default is to include these additional comments.

Keep but comment out any dead transitions? — This option, when selected, will com-
ment out any generated TRANTO statements for which it can be determined that the source
state will always be a death state. Use of this option will reduce the number of AS-
SIST warnings when the model is run. The default is to keep but comment out any dead
transitions.

35

Use explicit indicies when possible? — This option uses a numerical value when possible
in generated TRANTO statements. For example, without explicit indicies, the generated

“IF (ix = 3) THEN ... TRANTO ABC[ix]” will, with explicit indicies, be generated as
“IF (ix = 3) THEN ... TRANTO ABC[3]”. The default is to use explicit indicies when
possible.

Count Spare Failures for pruning? — Include spare failures when counting the number
of components removed from the configuration for pruning. The default is to count spare
failures for pruning.

With trimming turned on? — Set TRIM=ON in the ASSIST-language file and calculate
an appropriate TRIMOMEGA constant for ASSIST trimming. The default is to trim the
model.

Comment Conflicting Dependency Effects — When generating an ASSIST model, con-
flicting dependency effects, such as one or more dependencies causing both the increment-
ing and decrementing of the same variable, generate warning messages and are otherwise
ignored. Although it is often desirable to ignore these, they can sometimes indicate an
erroneously modeled file. If this option is selected, then a comment will be placed in the
generated ASSIST input file in the destination of the TRANTO where the ignored effect
would have gone had it not been ignored. The default is not to comment conflicting effects.

Comment Duplicate Dependency Effects — When generating an ASSIST model, du-
plicated dependency effects, such as one or more dependencies causing the same effect
specified more than once, are ignored. Although it is desirable to ignore these, they can
sometimes indicate an erroneously modeled file. If this option is selected, then a comment
will be placed in the generated ASSIST input file in the destination of the TRANTO where
the ignored effect would have gone had it not been ignored. The default is not to comment
duplicate effects.

With “COMMENT OFF;”? — Include the statement “COMMENT OFF;” in the AS-
SIST model description, which will cause ASSIST to generate the SURE model without
the state-space variable values in comments. Inclusion of SURE-level comments is usually

not desired because it significantly increases the size of the SURE model file. The default
is to turn “COMMENT OFF;".

SURE pruning — This option determines how much SURE level pruning(2] is performed.
With the choice “PRUNE = 1.0E—N”,the value of “n” specified sets the prune level to 107".
The default is “AUTOPRUNE".

The user can select any combination of options from the panel.

The user unfamiliar with ASSIST model pruning and trimming is directed to [7] or [8] for a
description of those techniques. The SURE program cannot solve models with competing transi-
tions specified as means and standard deviations unless the probability of each path traversal is
also given. Trimming fortunately has the effect of eliminating these competing transitions from
the model. It is assumed that many models will require trimming, so trimming is turned on as

36

Prune ASSIST Ater Number of Component Fatlures: D

[List TOTAL tables in ASSIST comments? H Count Spare Failures for pruning?

[Generate Assertions? I With trimming turned on?

O Track Removed Components? [Comment Conflicting Dependency Effects
@ Additional Trace Comments?] Comment Duplicate Dependency Effects
Hl Keep but comment out any deed transitions? B With "COMMENT OFF;*?

M Use explick indicies when possibie?
SURE pruning:

O None ¢ AUTOPRUNE < PRUNE = 10E -N D

Figure 30: Default Options Used to Generate ASSIST Output File

Prune ASSIST After Number of Component Fallures:

8 List TOTAL tabies in ASSIST comments? W Court Spare Fallures for pruning?

I Generate Assertions? I Whih trimming turned on?

8 Track Removed Components? O Comment Confiicting Dependency Effects
M Additional Trace Comments? 0 Comment Duplicate Dependency Effects
O Keep but comment out any dead ransitions? H With "COMMENT OFF;"?

0 Use explictt indicies when possibie?
SURE pruning:

@ None & AUTOPRUNE <> PRUNE = 10 E -N E_—_] (ex]

Figure 31: Changing Options Used to Generate ASSIST Output File

37

the default. TOTAL automatically determines a suitable, conservative value for the trimming
input parameter, TRIMOMEGA, so the trimming is done automatically. For the few models
that have all FAST recoveries, the user can turn trimming off if he wishes to do so. If the user
turns TRIM OFF and this is not appropriate, then the system will warn the user, as illustrated
in Figure 32. The user can choose to ignore the warning, but the model will not be solvable as
18.

h;Elnm ﬂ size || Tailure-rate prob-of-detection I

Spare Pools: e s
I Edr
Prune ASSIST After Number of Component Failures: E:

Components | B List TOTAL tables in ASSIST commants? B Count Spars Fallures for pruning?

Edn m **» WARNING, SURE Cannot soive models with non-exponential
<mu,sigma> rates unless TRIM is ON.
fects

noted
1 Adctonei Trace Comments? O Comment Duplicate Dependency Efiects
{0 Keep bt comment out sy dead transitions? B WRh "COMMENT OFF;"?
Dependencie:
|E¢n O Use mxplicit indicles whan possidie?
SURE pruning:
@ Nonw O AUTOPRUNE & PRUNE - 106 -N [| ©K]
System Faiure,

Condwons: Y ogamiie m(;-:-;ru-)"

E DEATHIF MAJ(Dus

=

H lEI | I!! | |

Figure 32: Warning for Systems for Which TRIM Should Remain On

If the user were to enter a system that had all FAST rates, turn trimming off, and then make
a change to the rates that would require trimming in order to solve the modified model, the
warning will appear again as illustrated in Figure 33. The user will be warned when a rate is
changed from a safe rate to an unsafe rate and also when the “Okay” button is clicked.

Non-exponential rates are also disallowed when a component models transients as illustrated in
Figure 34.

38

Permanent fauk amval rale

[} Y

<mu,sigma> rates uniess TRIM is ON.

m =** WARNING, SURE Cannot solve models with non-sxponential
notsd

.3

Rale to reconfigurs in & spare
R_S: [<355203,7.71g2>

Tanseo! faud anval yals

LTy

Translont Faull disappaagnes 3l

v

Figure 33: Warning Also Appears When Rates Are Changed

39

e

Permanent fault arrival rate
L.P:[720-4

Rate to rer

Rats to rec

R_S: | <3.55203,

Transient fault arrival rate
LT e-4

Transiont Fault disappearance 1]
0IS: [6:305

Figure 34: Warning Also Appears with non-exponential Rates when Transients are Modelled

40

5 Model Generation Logic and Mathematics

When defining a component, two types of recoveries can be specified. These are:

e recovery by swapping in a spare

e recovery by degrading the system

In either case, the faulty component is removed from the active configuration.

To specify the availability of spares, input a “Dedicated Spare Count” greater than zero and/or
enter the name of at least the “Primary Spare Pool” on the “Component Configuration” panel
as detailed in Section 3.2 on page 10.

To specify that a component will degrade, click on one of the radio buttons in the “Degradable”
box on the “Component Configuration” panel as shown in Figure 10 on page 10.

5.1 Spare Component Logic and Mathematics

Whenever a component has available spares (either dedicated or pooled), then a faulty processor
is removed and replaced with a spare. If there are dedicated spares, they will be used first. If
there are spares available in the primary spare pool, they will be used first after all dedicated
spares have been used. The secondary spares are used next, followed by the tertiary spares.

In the case of hot or warm spares, which can fail before ever being used, the spares always
fail permanently. This is significant when transient faults are present. In the presence of
a failed transient, replacement with a failed spare is modeled by removing the failed spare
from the available spares, removing the failed transient, and adding a failed permanent to the
configuration. In the presence of a failed permanent, this involves only removing the failed spare
since the net effect of the replacement is to swap one failed permanent for another.

The generated transitions to replace a failed transient with a failed spare are:

NFS_component--,NFT_component--,NFP_component++,
or

NFS_spare--,NFT_component--,NFP_component++,

whereas the generated transition to replace a failed permanent with a failed spare is:

NFS_component--,
or

NFS_spare--,

where “component” is the name of any component that has a transient fault and “spare” is the
name of any spare pool from which the component may draw spares. The “NFS_component” is

41

used for the number of failed dedicated spares in the component and the “NFS_spare” for the
number of failed spares in the spare pool named “spare”.

When spares can fail, two transitions are generated instead of one; one for replacement with a
working spare and one for replacement with a failed spare. The recovery rates are adjusted by
the probability that the spare is working or failed, respectively. The probabilities are computed
as:

IMPLICIT PRF_spare[NWS_spare,NFS_spare] = NFS_spare / NUC_spare;
IMPLICIT PRW_spare[NWS_spare,NFS_spare] = NWS_spare / NUC_spare;

where “NUC_spare” is the number of spares under consideration and is defined to be the total
count of all spares that have not been detected as having failed.

In the case of partially detectable spares, these probabilities are computed as:

IMPLICIT PRF_spare[NWS_spare,NFD_spare,NFU_spare] = NFU_spare / NUC_spare;
IMPLICIT PRW_spare[NWS_spare,NFD_spare,NFU_spare] = NWS_spare / NUC_spare;

Where “NFU” stands for the “number of failed undetected” spares and “NFD” stands for the
“number of failed detected” spares.

In the case where the probability of detecting a failed spare is 100%, the system will not generate
a transition for swapping in a failed spare.

5.2 System Degradation Logic and Mathematics

Whenever the user defines a component as degradable by selecting some “Degradable” option
other than “Non-degradable” from the “Component Configuration” panel, rules are generated to
the ASSIST model output file in order to degrade the system according to the option specified.
There are three options other than the “Non-degradable” option, namely:

¢ Triplex to duplex to simplex
e Triplex to simplex

e Duplex to zero

5.2.1 Degrade “Triplex to duplex to simplex”

This is a simple case of degradation, which requires no additional logic since every degradable
component will always degrade by one until the system degrades to a triplex. This simple
degrade-by-one logic is placed in the ELSE clause of the generated IF when one of the other two
degradation schemes is selected as detailed in Sections 5.2.2-5.2.3.

42

5.2.2 Degrade “Triplex to simplex”

In the case where system degradation is from three components to one component, the generated
transitions depend upon the current state of the component at the time at which the recovery
by degradation occurs. The cases without and with transients will be considered separately. Be-
cause degradation is from three active to one active, degradation by removal of two components
takes place only if the number active in the component in question is exactly three.

No transients occur for component

Whenever there are no transients for the component in question, the state space will be modeled
as active and working.

When modeled collectively, the space will be (NA,NW). Because there is a fault present that has
been detected, hence the need to degrade, there are only three possibilities for the current state
space configuration:

(NA,NW) = (3,2) (i.e, two working, one faulty active)
(NA,NW) = (3,1) (i.e, one working, two faulty active)
(NA,NW) = (3,0) (i.e, all three are faulty active)

Case where two are working

In the case where there are two working, since there are three active and one fault has been
detected, the system must necessarily remove one of the two working with the failed one when
it degrades from three to one. This happens 100% of the time:

(3,2) — (1,1) NA=NA-2,8W-- 100% of the time (throw away one of the working ones)

When modeled individually, for each of the cases, a loop and if test will be generated in order
to figure out which are the two working. In this case, there is a 50% probability of pulling the
first working one and 50% probability of pulling the other working one.

Case where one is working

In the case where there is only one working, the system will remove the detected failed and one
other processor. The other one removed could be the other failed one or it could be the working
one. There is a 50% probability in either case. The transitions will be:

(3,1) — (1,0) KA=NA-2,HW-- 50% of the time (throw away the working one)
(3,1) — (1,1) NA=NA-2 50% of the time (throw away the other failed one)

When modeled individually, for each of the cases, a loop and if test will be generated in order
to figure out which of the other two is the working one and which is the failed one.

Case where all have failed

43

In the case where there are no working, the system will merely remove two faulty with 100%
probability:

(3,2) — (1,1) KA=NA-2 100% of the time (throw away one of the other two faulty ones)

When modeled individually, for each of the cases, a loop and if test will be generated in order
to figure out which are the other two faulty. In this case, there is a 50% probability of pulling
the first one of the other two faulty and a 50% probability of pulling the last one of the other
two faulty.

Transients occur for component

Whenever there are transients for the component in question, the state space will be modeled
as working, failed permanent, and failed transient.

When modeled collectively, the space will be (NW,NFP,NFT). Because there is one fault present
that has been detected, hence the need to degrade, the number working can be no more than
two. There are many possibilities for the current state space configuration:

NW = 2
NW,NFP,NFT)

(= (2,1,0)

(NW,NFP,NFT) = (2,0,1)
NW =1

(NW,NFP,NFT) = (1,2,0)

(NW,NFP,NFT) = (1,0,2)

(NW,NFP,NFT) = (1,1,1)
NW =0

(NW,NFP,NFT) = (0,3,0)

(NW,NFP,NFT) = (0,0,3)

(NW,NFP,NFT) = (0,2,1)

(NW,NFP ,NFT) = (0,1,2)

Case where two are working

In the case where two are working, the system will remove the detected failed and one of the
two working. In either case, there is a 100% probability of removing one of the working ones.
The transitions will be:

If the failed one is a permanent:

(2,1,0) — (1,0,0) 100% NW-- ,NFP-- (throw away one working)
If the failed one is a transient:

(2,0,1) — (1,0,0) 100% NW--,NFT-- (throw away one working)

When modeled individually, for each of the cases, a loop and if test will be generated in order
to figure out which are the two working. In this case, there is a 50% probability of pulling the
first one of the two working and a 50% probability of pulling the last one of the two working.

Case where one is working

44

In the case where only one is working, the system will remove the detected failed and one of the
other two. One of the other two that could be removed is the working one; however, the other
one that could be removed might be either failed transient or failed permanent.

If both are failed permanents, then the system could throw away a working with the detected
failed permanent or it could throw away the other failed permanent with the detected failed
permanent. Each possibility would happen with 50% probability.

If both are failed transients, then the system could throw away a working with the detected failed
transient or it could throw away the other failed transient with the detected failed transient.
Each possibility would happen with 50% probability.

If there is one each of failed transient and failed permanent, then the detected failed could
be the failed permanent or it could be the failed transient. There is a 50% chance of either
case. When the detected one is a failed permanent, then there is a conditional 50% chance of
removing the working and a conditional 50% chance of removing the failed transient with the
failed permanent. When the detected one is a failed transient, then there is a conditional 50%
chance of removing the working and a conditional 50% chance of removing the failed permanent
with the failed transient. The unconditional probabilities multiply to 25% with the case of
removing both a failed permanent and a failed transient occurring twice to make 50%.

"The transitions will be:

If both failed are permanents:
(1,2,0) — (0,1,0) 0% NW--,NFP-- (throw away the working)
(1,2,0) — (1,0,0) 50% NFP=NFP-2 (throw away other failed)
If both failed are transients:
(1,0,2) — (0,0,1) 50% NW--,NFT-- (throw away the working)
(1,0,2) — (1,0,0) 50% NFT=NFT-2 (throw away other failed)
If one of the two failed is permanent and the other transient:
(1,1,1) — (0,1,0) 26% NW--,NFT-- (throw away working)
(1,1,1) — (1,0,0) 50% NFP-~,NFT-- (throw away other failed)
(1,1,1) — (0,0,1) 25% NW--,NFP-- (throw away working)

When modeled individually, for each of the cases, a loop and if test will be generated in order
to figure out which is the other failed and which is the working.

Case where all are failed

In the case where all have failed, the system will remove the detected failed and one of the other
two failed.

If all three have failed permanently, then the detected fault must be a permanent fault and
another failed permanent will be thrown out with it. The probability is 100%.

If all three have failed transiently, then the detected fault must be a transient fault and another
failed transient will be thrown out with it. The probability is 100%.

If two of the failed have failed permanently, then the other will have failed transiently. If the fault
detected is a permanent, which will happen two thirds of the time, then the other fault could
be the other failed permanent or it could be the failed transient. The conditional probabilities
are 50% each. If the fault detected is a transient, which will happen one third of the time,

45

then the other fault could be the other failed transient or it could be the failed permanent.
The conditional probabilities are 50% each. Multiplying the probabilities, the result is a 67%
probability of removing one of the two permanents with the only transient and a 33% probability
of removing both of the permanents.

If two of the failed have failed permanently, then the other will have failed permanently. If the
fault detected is a transient, which will happen two thirds of the time, then the other fault could
be the other failed transient or it could be the failed permanent. The conditional probabilities
are 50% each. If the fault detected is a permanent, which will happen one third of the time,
then the other fault could be the other failed permanent or it could be the failed transient.
The conditional probabilities are 50% each. Multiplying the probabilities, the result is a 67%
probability of removing one of the two transients with the only permanent and a 33% probability
of removing both of the transients.

The transitions will be:

If all three have failed permanently: i

(0,3,0) — (0,1,0) 100% NFP=NFP-2 (throw away another permanent)
If all three have failed transiently:

(0,0,3) — (0,0,1) 100% NFT=NFT-2 (throw away another transient)
If two have failed permanently:

(0,2,1) — (0,1,0) 87% NFP-—,NFT-- (throw away perm and trans)

(0,2,1) — (0,0,1) 33% NFP=NFP-2 (throw away both permanents)
If two have failed transiently:

(0,1,2) — (0,0,1) 67% NFP--,NFT-- (throw away perm and trans)

(0,1,2) — (0,1,0) 33% NFT=NFT-2 (throw away both transients)

When modeled individually, for each of the cases, a loop and if test will be generated in order to
figure out which are the failed transients and which are the failed permanents. When all three
have failed permanently, then the detected one is failed permanent and there is a 50% chance
of removing the first of the other two failed permanents and a 50% chance of removing the last
of the other two permanents. When all three have failed transiently, then the detected one is
failed transient and there is a 50% chance of removing the first of the other two failed transients
and a 50% chance of removing the last of the other two transients.

5.2.3 Degrade “Duplex to zero” (Self-Checking Pairs)

In the case where system degradation is from two components to no components, the number
active, number working, number failed permanent (in the case of transients), and number failed
transient (in the case of transients) are all set to zero.

When the component is modeled individually, each active, working, failed permanent (in the
case of transients), and failed transient (in the case of transients) is set to FALSE.

The rate used for this single transition is the normal recovery rate for degradation, namely
“R_D.comp” for component “comp”.

Because degradation is from two active to no active, degradation by removal of two components
takes place only if the number active in the component in question is exactly two.

46

5.3 Recoveries and Death States

In many systems, many of the cases allowed for during the spare replacement and degradation
recoveries can never happen because the states are death states. The cases must be considered,
however, because this depends upon which system failure conditions were specified. For some
of the more common system failure conditions, TOTAL is able to determine that the current
state is a death state and the transitions are automatically commented out of the generated
ASSIST file so as to decrease the number of warnings such as:

[WARNING] NO TRANSITIONS GENERATED USING TRANTO ON LINE : nnn
However, users employing textual DEATHIF descriptions or complex combinations of system

failure conditions may see this warning when ASSIST executes. The warning can be safely
ignored.

47

6 System Requirements

The TOTAL prototype program was written using the Transportable Applications Environment
(TAE) developed at NASA Goddard Space Flight Center in Maryland. The TAE system
executes on top of the Motif windowing system. The Motif system, which is based on X-
Windows, is available on quite a few different systems, including both SUN and VAX systems.

The TAE package was used in order to be portable between different systems and in order to
save development time.

6.1 Hardware/Operating System Requirements
6.1.1 Requirements to run pre-compiled versions

Executable files compiled at version 4.1.2 of SUN OS on the SUN SPARCSTATION?" archi-
tecture are available for sites without compilers or TAE. To run the pre-compiled SUN OS
version, some version of the X (MIT or OpenWindows 3.0) must be executing. The Motif (mwm)
window manager must also be executing.

The TOTAL program has been ported to the VAX. Executable files compiled at VAX VMS
V5.5 are available for VAX sites without compilers or TAE. Executables are built with version
V3.1-051 of the VAX C compiler and with V3.8-273 of the VAX PASCAL compiler. To run
the pre-compiled VAX VMS, the DECWINDOWS MOTIF window manager must be executing.

6.1.2 Requirements to re-compile

The TOTAL program was written in ANSI-standard “C” by David Boerschlein. It currently
compiles on a SUN SPARCSTATION with the TAE V5.2 libraries executing the MOTIF win-
dowing system or on a VAX with the TAE V5.2 libraries under the VMS operating system
executing DECWINDOWS MOTIF.

An ANSI-standard “C” compiler is available from the Free Software Foundation (“gcc”). The
“C” compiler that is available with the VAX VMS operating system is also ANSI. The current
SUN “C” compiler will not compile TOTAL. SUN may release an ANSI “C” compiler in the

future.

Some of the programs (such as SURE, STEM, and PAWS) that are used to process ASSIST
output files require a Pascal compiler in order to re-build. The VMS version of TOTAL also
requires the Pascal compiler.

273 trademark of SPARC International

48

6.2 Memory Requirements

The TOTAL program will not execute on a system with less than 16MB of memory, and 24MB
is recommended for efficiency. This is because TOTAL makes use of a lot of windows. Both
MoTIF and DECWINDOWS MOTIF use a good deal of memory.

6.3 Software System Requirements

The user must be executing under either the DECWINDOWS MOTIF or the MOTIF windowing
system on top of SUN OS.

Features of ASSIST referenced in TOTAL require ASSIST revision 7.1 or higher as well as
SURE, STEM, and/or PAWS revisions 7.9.8 or higher. Model files produced with TOTAL
can be processed with older revisions of SURE, STEM, and/or PAWS provided that the
combinatorial functions (COMB, PERM, FACT, and GAM) and the modulo operators (MOD, DIV, and
CYC) are not referenced. Use of dependencies that reference components of different redundancy
counts can generate ASSIST code that references the CYC operator. In this case, SURE version
7.9.3 is required.

6.4 Monochrome vs Color

The TOTAL program will run on either a monochrome or color terminal. Some of the features
of its look are more pronounced on a color terminal.

49

7 Concluding Remarks

A prototype spreadsheet interface for a reliability analysis tool set has been described. The
TOTAL interface program allows the user to describe a system at a level of abstraction ap-
propriate for designers of fault-tolerant systems, even those with no background knowledge in
reliability analysis calculations. We do not plan to take this concept beyond the prototyping
stage; however, we believe that the interface method we have developed is powerful, and we
hope that other reliability analysis tool developers will gain new insights from our research and
perhaps develop a commercially available tool with the capabilities we envision.

50

References

[1] R. W. Butler, “The SURE approach to reliability analysis,” IEEE Transactions on Reliabil-
ity, vol. 41, pp. 210-218, June 1992.

[2] R. W. Butler and A. L. White, “SURE reliability analysis: Program and mathematics,”
NASA Technical Paper 2764, Mar. 1988.

[3] R. W. Butler and P. H. Stevenson, “The PAWS and STEM reliability analysis programs,”
NASA Technical Memorandum 100572, Mar. 1988.

(4] R. W. Butler, “An abstract language for specifying markov reliability models,” IEFE Trans-
actions on Reliability, vol. R-35, pp. 595-601, Dec. 1986.

[5] S. C. Johnson, “ASSIST user’s manual,” NASA Technical Memorandum 87735, Aug. 1986.

[6] A. L. White and D. L. Palumbo, “State reduction for semi-markov reliability models,” in
The 36th Annual Reliability and Maintainability Symposium, (Los Angeles, CA), Jan. 1990.

[7] S. C. Johnson, “Reliability analysis of large, complex systems using ASSIST,” in AIAA/IEEFE
8th Digital Avionics Systems Conference, (San Jose, California), Oct. 1988.

[8] R. W. Butler and S. C. Johnson, “The art of fault-tolerant system reliability modeling,”
NASA Technical Memorandum 102623, Mar. 1990.

51

A Command Line Interface

For both UNIX and VMS systems, the TOTAL program is invoked via:

total

or
total <resource-file-name>
or
total <total-file-name>
or
total <total-file-name> <resource-file-name>
or

total <resource-file-name> <total-file-name>

Options can appear anywhere on the command line after the name of the command “total”. They may precede
or they may follow the optional resource and/or TOTAL file names.

The user must specify a suffix of “.res” for the resource file name. The user may explicitly specify the suffix of
“ tot” for the TOTAL file name but this is not required.

If more than one resource file name is specified, then the last one specified on the command line is used and the
prior ones are ignored.

If more than one TOTAL file name is specified, then the last one specified on the command line is used and the
prior ones are ignored.
A.1 Command Line Options File

The user may define an options file to override the default options. The options specified in the total options file
are parsed first before any command line options.

The name of the total options file on UNIX systems is:

.total_options

and its name on VMS systems is:

total_options.cfg

The file is located in the user’s home directory.
Any and all of the command line options can be defaulted in the total options file.

No option in the total options file may span two lines and backslashes are not allowed. The user is free to put
more than one option on a line as long as the options are separated by whitespace. The user is also free to use
as many lines as desired.

A.2 Command Line Options

The TOTAL command line allows the user to specify options. These options control a number of parameters
and allow the user more control over how the TOTAL program executes.

92

Options must be preceded by a slash under VMS as in:
/batch

and must be preceded by a dash under UNIX as in:

—batch

The following sample command lines are equivalent and specify the use of the “emacs” editor instead of “vi”, use
of the “MyResource.res” resource file and initialization by reading in the existing (old) system called “sample”:

total MyResource.res sample.tot —ema
total MyResource.res sample —ema
total sample MyResource.res —ema
total MyResource.res —ema sample
total —ema MyResource.res sample

Options may be specified either in upper or lower case. The normal UNIX case sensitivity does not apply to
the TOTAL command line options.

The following options are available:

e —audio — This option tells TOTAL to play sounds when certain actions take place. This can be
useful, for example, with large models that take a fair amount of time to generate and solve. In order for
sounds to play, the operating system must have been installed with the demos option and the sounds files
must exist in “/usr/demo/SOUND/sounds”. The default is not to play any sounds.

e —batch filename — Specifies that the program is to execute in batch mode instead of in workstation
mode. The typical user will not be interested in batch (“.tba”) files, however, many of the operations that
can be performed with the panels can also be done via special “commands” in a batch file. Batch files are
not fully supported. The default is interactive processing mode.

e —comp =nnn — This option specifies the maximum number of components in the system. The default
is 100.

e —con =nnn — This option specifies the maximum number of conditional dependency condition AND list
items allowed in the system. This number is the cumulative total of the lengths of each condition AND list
for each conditional dependency in the system. The default is 200.

e —dand =nnn — This option specifies the maximum number of system failure AND list items allowed in
the system. This number is the cumulative total of the lengths of each DEATHIF. The default is 200.

o —dep =nnn — This option specifies the maximum number of dependencies allowed in the system. Each
dependency counts only once even though it may have several effects. The default is 50.

e —dif =nnan — This option specifies the maximum number of system failure conditions (DEATHIF's)
allowed in the system. Each condition counts only once even though it may have several AND’s in the list.
The default is 50.

e —dl =nnn — This option specifies the maximum number of dependency lines which a system is allowed
to have. Note that each effect increases the number of lines required by one. One dependency will therefore
require one line for each of its effects. The default is 180.

e —eff =nnn — This option specifies the maximum number of dependency effect list items allowed in the
system. This number is the cumulative total of the number of effects for each dependency in the system.
The default is 200.

33

—ema — This option specifies that the EMACS editor is to be used when the user requests to edit the
ASSIST output file. This editor is available on both VMS and Unix systems as well as on many other
systems. One version of EMACS is available from the Free Software Foundation. The default is to use the
system editor and not to use EMACS. The Unix version of TOTAL assumes the version from the foundation
in that it uses the —nw option when invoking the editor.

—eve — This option specifies that the VMS EVE editor is to be used when the user requests to edit the
ASSIST output file. If this option is specified and the user is running on a Unix system, then TOTAL
assumes that the user really meant to specify —vi and will use the Unix vi editor instead. This (—eve
) is the default on VMS systems.

—nc =nnn — This option specifies the maximum number of named constant lines allowed. Named
constants are not generated in TOTAL 1.0. The default is 100.

—noaudio — This option turns off the —audio option.
—noeve — This option turns off the —eve option.
—novi — This option turns off the —vi option.

—pool =nnn — This option specifies the maximum number of shared spare pools in the system. The
default 1s 50.

—prb =nnn — This option specifies the maximum length of the probability buffer. This buffer is used
to store the rate expressions for the TRANTO’s before they are written to the ASSIST output file. The
default of 512 bytes should be much more than sufficient for virtually all system descriptions.

—pro =ann — This option is the same as —prb .

—rc =nnn — This option specifies the maximum number of rate constant lines allowed. Rate constants
are generated for inclusion in the ASSIST output file and are displayed in the “System Definitions” panel.
Rate constants include means and standard deviations as well as fast and slow rates as specified for each
component, dedicated spare failure rates for each component, and pooled spare failure rates for each spare
pool. The rate constants also include the definition of TRIMOMEGA when trimming is turned on. The
definition of TRIMOMEGA takes many lines (one line per component fault arrival rate). The default is
800.

—sc =nan — This option specifies the maximum number of space constant lines allowed. Space constants
are constants that are required in the generated SPACE and START statements as displayed in the “System
Definitions” panel for inclusion into the ASSIST output file. These constants include the initial numbers
of components and spares. Also included is the grand total of all of the components used in the system.
The default is 300, which allows for approximately 150 initial numbers of components and spares.

—sp =nnn — This option specifies the maximum number of space lines allowed for a generated SPACE
statement as displayed in the “System Definitions” panel. The default is 102, which corresponds to 100
state space variables plus a leading and trailing line.

—ssv =ann — This option specifies the maximum number of auxiliary state-space variables that are
allowed in the system. The default is 50.

—tto =nnn — This option specifies the length of the transition buffer. This buffer is used to store the
TRANTO’s before they are written to the ASSIST output file. When there is a big “domino effect” with
dependency causes and effects, the TRANTO can get rather large. The default is 4096, which corresponds
to about 50 lines in the ASSIST output file.

—vi — This option specifies that the Unix vi editor is to be used when the user requests to edit the
ASSIST output file. If this option is specified and the user is running on a VMS system, then TOTAL
assumes that the user really meant to specify —eve and will use the VMS EVE editor instead. This (—vi
) is the default on Unix systems.

54

A.3 The Resource File

If the user has access to the Transportable Applications Environment (TAE) utility?, then the user can use the
TAE workbench to customize the resource file. This would be useful, for example, to change the colors used in
the displays. To do this, copy the resource file and run the workbench. For example:

cp /usr/local/bin/total_resource_file.res myres.res
taewb -f myres.res?®

or

COPY RELIABILITY$DIR TOTAL_RESOURCE_FILE.RES MYRES.RES
RUNWB MYRES.RES*

The TAE utility is not required to run TOTAL (just to re-build and link the executable and customize the
resource file).

A.4 Converting Between ASCII and TOTAL Description Files

Because TOTAL description files (“.tot” files) are stored in system binary format, a description file cannot be
transferred to another system and used directly. For example, a total description file created on a SUN system
.cannot be directly read on a VAX system.

In order to transfer TOTAL description files from one system to another, two commands are provided:

o tot2txt — Converts from binary “.tot” format to ASCII “.txt” format.

o txt2tot — Converts from ASCII “.txt” format to binary “.tot” format.

For example, to transfer a file named “myfile.tot” from the SUN to the VAX, do the following:

sunj tot2txt myfile
sun), $then copy the file “myfile.txt” to the vax$
vax$ txt2tot myfile

28 Available from COSMIC, # C0OS-10033 or COS-10034
29This corresponds to TAE V5.2 on SUN OS
30This corresponds to TAE V4.1 on VMS

39

B Installation of TOTAL

Installation of TOTAL is automated by the Makefile and or the VMSINSTAL procedure. There is a default
resource file that is accessed if one is not specified on the command line. This resource file must reside in the
system directories.

B.1 Under SUN OS

The default resource file must be accessed via the path:

Jusr/local/bin/total _resource_file.res

Each user can override this default by listing a resource file pathname in his/her own home-directory “to-
tal_options” file.

B.2 Under VMS

On VMS, the default resource file must be accessed via the path:

RELIABILITY$DIR:TOTAL_RESOURCE_FILE.RES

Each user can override this default by listing a resource file pathname in his/her own home-directory “to-
tal_options.cfg” file.

56

C Icons for TOTAL under Motif

The icons for the panels in TOTAL are illustrated in Figure 35.

GENERATE:

TRIMWARN] 12

CONDITION{ DEPEND’CY SAVE-NEILE] ICENERATE;

Figure 35: Icons that appear when TOTAL panels are minimized

57

D Sample ASSIST file generated by TOTAL

The following is the ASSIST input file generated by TOTAL that corresponds to the sample system in this
manual:

C.OPTION TOTAL_GENERATED;
C.OPTION WL=40;

C_OPTION WID=192;

C_OPTION WRAP_LONG_CONSTANT_EXPRS;

COMMENT OFF;
(.)
< Py esns)
(eee "ee)
(ese TABLE ORIENTED SYSTEM DESCRIPTION ##»)
(ees *e)
(. n)
(.)

(

This example system consists of a triplex set of processors with one spare
processor, a triplex set of memory units, and a quadruplex bus. All messages
and calculations performed in the system are subject to majority voting to
detect and mask failures. Thus, a majority of the processors in the current
configuration must be working, or system failure occurs. Similarily, a
majority of the memories and a majority of the buses must be working. Upon
detection of the first processor failure, the spare processor is brought into
the configuration to replace the faulty processor. Upon the second processor
failure, the faulty processor is removed and the remaing two working
processors continue in duplex mode. Failure of one of the remaining two
working processors is assumed to immediately defeat the majority voter. Each
memory unit is attached to one of the processors and removal of a failed
processor also results in removal of its attached memory. The memory units
degrade from triplex to duplex to simplex as failed memory units are detected
in the configuration or are removed because of processor removals. The bus
is non-reconfigurable.

No spare pools defined.

list of components:

L name redund trans/int degrad dedicated-spares
1 processors 3 trans 3-2-1 1 6.113e-4 Fully
1 memories 3 trans 3-2-1 O
1 bus 4 non 0
pools
L_P R_D R_S LT DIS

7.20-4 3.562¢3 3.562e3 1le-4 6.5e6
4.4e-3 12.213e3 n/a §.403¢-3 6.8e¢-4
2.202¢~3 n/a n/a n/a n/a

list of dependencies:

58

cause -> effect

REM(processors[1]) -> REM(memories[1])

REM(processors[2]) -> REM(memories[2])

REM(processors[3]) -> REM(memories[3])
Deathif list:

DEATH expression

DEATHIF MAJ(processors)
DEATHIF MAJ(memories)
DEATHIF MAJ(bus)

No extra state-space variables defined.

(»] *«)

(] L] ")

(*ss "hs)

(##s SPACE CONSTANTS »as)

(€113 ")

(L] T TITITTY)

(» » [111))
Prune_After = 4; (* Prune after 4’th component failure)
BI_processors= 3; (* Redundancy count for “processors *)
NSI_processors= 1; (» Dedicated spare count for "processors" %)
NI _memories = 3; (* Redundancy count for "memories')
II_bus = 4; (» Redundancy count for "bus' *)

NTOT = NI_processors + NSI_processors + NI_memories + NI_bus;
(*» total number of components initially)
ECFMX = NTOT; (* Maximum possible component failure count)

(€I T T T T T P PP TP TY)
(€I 2 T TP T P YT T PR YY)

(wee *ns)
(#es RATE CONSTANTS ess)
(ses ")

[P T e T I I 1))
(€T T T YT T T I 1))

L_P_processors» 7.2e-4; (+ Permanent fault arrival rate for "processors" =)
R_D_processors= 3.552e3; (¢ Rate to degrade for 'processors" =)
R_S_processors= 3.552e3; (*¢ Rate to reconfigure spare into "processors")
L_T_processors= te-4; (* Transient fault arrival rate for "processors" &)
DIS_processors= 6.5e5; (% Rate at which "processors" transient disappears »)
L_P_memories = 4.4e-3; (# Permanent fault arrival rate for "memories" #)
R_D_memories = 12.213e3; (» Rate to degrade for "memories" &)

L_T_memories = 5.403e-3; (#» Transient fault arrival rate for "memories" =)
DIS_memories = 6.8e~4; (* Rate at which “memories’ transient disappears »)
L_P_bus = 2.202e-3; (* Permanent fault arrival rate for "bus" s)

TRIMOMEGA = NI_processors*L_P_processors +
NI_processors*L_T_processors +
NI_memories*L_P_memories +
NI_memoriessL_T_memories +
NI_bus*L_P_bus;

TRIM OF;

AUTOPRUNE = O;
PRUNE = O;

59

L_S.processors= 6.113e-4; (» Dedicated "processors” spare fail rate »)

(L)
()
(ses [11))
(ss» STATE SPACE DEFINED #s»)
(snn ")
(sesssnans])
(exnses »)
SPACE =
(

(W_processors : ARRAY[1..NI_processors] OF BOOLEAR) ,

(* Each working in "processors" ¢)
(FP_processors: ARRAY[1..NI_processors] OF BOOLEAD),

(* Each permanent failed in "processors" #)
(FT_processors: ARRAY[1..NI_processors] OF BOOLEAK),

(+ Each transient faulty in “processors" %)
EWS_processors: O..NSI_processors,

(* dedicated VWorking spares count, "processors" ¢)
NFS_processors: O..NSI_processors,

(» dedicated Failed spares count, "processors" *)
(W_memories : ARRAY[1..NI_memories] OF BOOLEAN),

(* Each vorking in "memories")
(FP_memories : ARRAY[1..NI_memories] OF BOOLEAN),

(* Each permanent failed in "memories’ #)
(FT_memories : ARRAY[1..NI_memories] OF BOOLEAN),

(*» Each transient faulty in "memories" ¢)

¥ _bus : 0..BI_bus, (* Count of working in "bus" #)
TRASH_CAN_SIZE : O..BTOT, (* removed components *)

ICF : 0..NCFEX (» Number of component failures for PRUNEIF #)
)i

INPLICIT NV_processors[¥W_processors] = COUNT(W_processors);
IMPLICIT NFP_processors[FP_processors] = COUNT(FP_processors);
INPLICIT NFT_processors[FT_processors] = COUNT(FT_processors);

INPLICIT EWOT_processors(¥_processors,FT_processors] =
(+ Number Working or Transient "processors” ¢)
EW_processors + NFT_processors;

INPLICIT WOT_processors[VW_processors,FT_processors](K) =
(+ Working or Transient each "processors" #)
W_processors[K] OR FT_processors(k];

IMPLICIT TFA_processors(FP_processors,FT_processors] =
(* Total active failed in “processors" »)
NFP_processors + BFT_processors;

INPLICIT BF_processors[FP_processors,FT_processors] =
(* Total active failed in “processors" *)
BFP_processors + NFT_processors;

INPLICIT TWA_processors([W_processors] =
(*» Total active working in "processors' *)
I¥_processors;

IMPLICIT TA_procoslors[H_procossot:.FP_procolsors,FT_procos-ors] =
(* Total active in "processors")
TFA_processors + TWA_processors;

IMPLICIT FA_processors{FP_processors,FT_processors](K) =
(* Active failed sach 'processors")
FP_processors{X] OR FT_processors(K];

INPLICIT A_processors[¥_processors,FP_processors,FT_processors](K) =
(*» Test if active in "processors" »)
W_processors{K] OR FP_processors[K] OR FT_processors([K];

INPLICIT EW_memories[W_memories] = COUBT(W_memories);

60

IMPLICIT NFP_memories[FP_memories] = COUNT(FP_memories);
IMPLICIT NFT_memories[FT_memories] = COUNT(FT_memories);

INPLICIT NWOT_memories{W_memories ,FT_memories] =
(s Number Working or Transient "memories’ *)
N¥_memories + NFT_memories;

INPLICIT WOT_memories[W_memories ,FT_memories](K) =
(* Working or Transient each '"memories")
W_memories[K] OR FT_memories([K];

IMPLICIT TFA_memories[FP_memories,FT_memories] =
(* Total active failed in "memories' *)
NFP_memories + RFT_memories;

IMPLICIT NF_memories[FP_memories ,FT_memories] =
(» Total active failed in "memories" »)
NFP_memories + BFT_memories;

IMPLICIT TWA_memories(W_memories] = (+ Total active working in "memories" »)
NV _memories;

IMPLICIT TA_memories[W_memories,FP_memories,FT_memories] =
(* Total active in "memories" s)
TFA_memories + TWA_memories;

IMPLICIT FA_memories[FP_memories ,FT_memories] (k) =
(* Active failed each "'memories" =)
FP_memories[K] OR FT_memories[X];

IMPLICIT A_memories[W_memories,FP_memories, FT_memories](K) =
(¢ Test if active in "memories" »)
W_memories[KX] OR FP_memories[K] OR FT_memories{K];

IMPLICIT TFA_bus[NW_bus] = (* Total active failed in "bus")
BI_bus - NEW_bus;

IMPLICIT NF_bus[NW_bus] = (* Total active failed in "bus")
BI_bus - NE¥_bus;

IMPLICIT TWA_bus[EW_bus] = (* Total active working in "bus" ¢)
W¥_bus;

IMPLICIT TA_bus[BW_bus]) = (* Total active in "bus" =)
NI_bus;

IMPLICIT NS_processors[WWS_processors,BFS_processors] =
WWS_processors + EFS_processors;

IMPLICIT NUC_processors[NWS_processors,NFS_processors] =
NWS_processors;

IMPLICIT PRF_processors[WWS_processors,NFS_processors] =
BFS_processors / NUC_processors;

IMPLICIT PRW_processors[BWS_processors ,BFS_processors] =
BUS_processors / NUC_processors;

IMPLICIT TS_processors[EWS_processors,NFS_processors] =
(» Total spares available to 'processors' #)
IWS_processors + NFS_processors;

INPLICIT TUC_processors[EWS_processors ,BFS_processors] =
(s Total spares under consideration for "processors")
BUC_processors;

START =
(
(NI_processors OF TRUE), (* Each working in 'processors")
(NI_processors OF FALSE), (¢ Each permanent failed in "processors" s)
(NI_processors OF FALSE), (* Each transient faulty in "processors" s)
ESI_processors, (» dedicated Working spares count, '"processors' #)
0, (» dedicated Failed spares count, 'processors')
(¥I_memories OF TRUE), (* Each working in "memories" *)
(NI_memories OF FALSE), (# Each permanent failed in '"memories" *)
(NI_memories OF FALSE), (» Each transient faulty in '"memories")

NI_bus, (* Count of working in 'bus' »)
0, (» removed components =)
0 (* Bumber of component failures for PRUNEIF »)

61

);

ASSERT NTOT =
COUNT(M_processors) +
COUNT(FP_processors) +
COUNT(FT_processors) +
COUNT(W_memories) +
COUBT(FP_memories) +
COUNT(FT_memories) +
NI_bus +
EWS_processors +
NFS_processors +
TRASH_CAN_SIZE;

()
()
(see ")
(sss COMPONENT: "processors" #2s)
(€1 1 (11)]
(o o)
(.)

(e

. Assertions for component "processors"

*)

ASSERT TA_processors >= TWA_processors;
ASSERT TA_processors >= TFA_processors;
ASSERT (TWA_processors + TFA_processors) <= NI_processors;
ASSERT (TWA_processors + TFA_processors) = TA_processors;

(*
* For each part in component ‘'processors”
.

*)

FOR ix IN [1..NI_processors]
ASSERT A_processors(ix) OR (NOT W_processors([ix]);
ASSERT COUNT(FP_processors[ix]) + COUNT(FT_processors[ix]) <= 1;
ASSERT COUNT(W_processors{ix]) +
COUNT(FP_processors{ix]) + COUNT(FT_processors[ix])

<= 1;
(=
. Fault Arrivals for component "processors"
* -
*)

IF (W_processors[ix]) THEN (+ Fault arrivals #)

(e
. Permanent fault arrivals
.
.)

TRANTO W_processors[ix]=FALSE,FP_processors[ix]=TRUE,FT_processors[ix]=FT_processors[ix],
HCF++
BY L_P_processors; (# Permanent fault arrival »)

62

(*
* Transient fault arrivals

TRANTO W_processors{ix]=FALSE,FT_processors{ix]=TRUE,FP_processors[ix]=sFP_processors[ix],
NCF++
BY L_T_processors; (* Transient fault arrival s)
ENDIF;

IF (FT_processors[ix]) (* Transient faults go permanent *)
TRANTO FT_processors[ix]=FALSE,FP_processors{ix]=TRUE,
NCF++
BY L_P_processors; (* Transient to Permanent fault arrival s)

(»
. Transients disappear for "processors"

IF (FT_processors[ix]) THEN (» Transient faults *)
TRANTO FT_processors[ix]=»FALSE,W_processors[ix]=TRUE
BY FAST DIS_processors; (* Transient disappears s)
ENDIF;

(

. Grab a spare for "processors' fault

*)

IF (FT.processors[ix]) THEE (* Transient faults)
IF (NUC_processors > 0) THEF (* Try dedicated spares for "processors” first)
IF (WWS_processors > 0)
TRANTO EUS_processors--,FT_processors[ix]=FALSE,W_processors{ix]=TRUE,
TRASH_CAN_SIZE++
BY FAST (PRW_processors)sR_S_processors;
ENDIF;
ENDIF;

IF (FP_processors[ix]) THEN (s Permanent faults *)
IF (NUC_processors > 0) THEN (* Try dedicated spares for “processors" first »)
IF (NWS_processors > 0)
TRABTO NWS_processors--,FP_processors[ix]=FALSE,W_processors{ix]=TRUE,
TRASH_CAN_SIZE++
BY FAST (PRW_processors)*R_S_processors;
ENDIF;
ENDIF;

(»
- Degrade component ''processors’
.

*)

IF (FA_processors(ix)) AND (TUC_processors = 0) THEN

(»
. degrade by one
*)
IF (FP_processors[ix]) THEN

IF (ix = 1) THEN

IF (W_memories[1]) THEN (* able to: WRM(memories[1]))
TRANTO FP_processors{1]=FALSE,
W_memories[1]=FALSE (* #1: REM(processors(1]) -> WRN.REN(memories[1]) »),

63

TRASH_CAN_SIZEsTRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (FP_memories[1]) THEN (» able to: PRM(memories[1])) ¢)
TRANTO FP_processors[1]=FALSE,
FP_memories[1]=FALSE (s #1: REM(processors[1]) -> PRM.REM(memories[i]) *),
TRASH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (FT_memories[1]) THEN (¢ able to: TRM(memories[il))
TRANTO FP_processors[1]=FALSE,
FT_memories[1]»FALSE (» #1: REM(processors[1]) -> TAN.REN(memories(1)) *),
TRASH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (TA_memories <= 0) THEE (* not able to: REN(memories[1)) »)
TRANTO FP_processors[1)=FALSE,
TRASH_CAN_SIZE++
BY FAST R_D_processors;
ENDIF;
ELSE IF (ix = 2) THEN
IF (W_memories[2]) THEN (» able to: WRM(memories[2]))
TRANTO FP_processors{2]=FALSE,
V_memorias[2)=FALSE (¢ $2: REN(processors[2]) ~> WAR.REN(memories(2]) #),
TRASH_CAN_SIZEsTRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (FP_memories[2)) THEN (» able to: PRM(memories[2]))
TRANTO FP_processors[2]=FALSE,
FP_memories[2]=FALSE (+ #2: REM(processors{2]) -> PRN.REM(memories(2]) #),
TRASH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (FT_memories[2]) THEN (s able to: TRM(memories[2]))
TRABTO FP_processors[2)=FALSE,
FT_memories[2]=FALSE (* $2: REN(processors[2]) -> TRM.REN(memories[2]) »),
TRASKH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (TA_memories <= 0) THEN (* not able to: REM(memories[2]))
TRANTO FP_processors[2]=FALSE,
TRASH_CAN_SIZE++
BY FAST R_D_processors;
ENDIF;
ELSE IF (ix = 3) THEN
IF (M_memories[3]) THER (+ able to: WRM(memories[3]) »)
TRANTO FP_processors[3]=FALSE,
W_memories[3]=FALSE (» $3: REN(processors([3]) -> WAN.REN(memories(3]) =),
TRASH_CAN_SIZEsTRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (FP_memories[3]) THEN (¢ able to: PRM(memories[3]))
TRARTO FP_processors[3]=FALSE,
FP_memories(3]=FALSE (+ #$3: REM(processors[3]) -> PRM.REN(memories[3]) ®),
TRASH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (FT_memories[3]) THEN (& able to: TRM(memories[3]) »)
TRANTO FP_processors[3]=FALSE,
FT_memories[3]=FALSE (*+ #3: REM(processors[3]) -> TRN.REN(memories(3]) »),
TRASH_CAN_SIZE=TRASH_CAB_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (TA_memories <= 0) THEN (* not able to: REM(memories[3]) »)

64

TRANTO FP_processors[3])=FALSE,
TRASH_CAN_SIZE++
BY FAST R_D_processors;
ENDIF;
ENDIF; ENDIF; ENDIF;
ENDIF;
IF (FT_processors[ix]) THEN
IF (ix = 1) THEN
IF (W_memories[1]) THEN (» able to: WRM(memories([1]))
TRANTO FT_processors{1]=FALSE,
W_memories[11=FALSE (* #1: REM(processors[1]) -> WRM.REM(memories{1]) *),
TRASH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (FP_memories[1]) THEN (* able to: PRM(memories[i]) #)
TRANTO FT_processors{1]=FALSE,
FP_memories[1]=FALSE (*» #1: REM(processors{1]) -> PRM.REN(memories[1]) *),
TRASH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (FT_memories[1]) THEN (» able to: TRM(memories[1]) *)
TRANTO FT_processors[1]=FALSE,
FT_memories{1]=FALSE (» #1: REM(processors[1]) ~> TRN.REN(memories[1]) »),
TRASH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ERNDIF;
IF (TA_memories <= 0) THEN (¢ not able to: REM(memories[1]) »)
TRANTO FT_processors[1]=FALSE,
TRASH_CAN_SIZE++
BY FAST R_D_processors;
ENDIF;
ELSE IF (ix = 2) THEB
IF (W_memories[2]) THEN (» able to: WRM(memories[2]) »)
TRANTO FT_processors[2]=FALSE,
W_memories[2}=FALSE (s #2: REM(processors(2]) -> WRK.REM(memories[2]) »),
TRASH_CAN_SIZE=TRASH_CAB_SIZE+2
BY FAST R_D_processors;
EBDIF;
IF (FP_memories[2]) THEN (s able to: PRM(memoriesf2]) »)
TRANTO FT_processors[2]=FALSE,
FP_memories[21sFALSE (+ #2: REM(processors[2]) -> PRM.REN(memories{2]) «),
TRASH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (FT_memories(2]) THEN (* able to: TRM(memories[2]) »)
TRANTO FT_processors[2]=FALSE,
FT_memories{2]=FALSE (¢ #2: REM(processors[2]) -> TRM.REN(memories[2]) #),
TRASH_CAN_SIZE=TRASH_CAN_SI1ZE+2
BY FAST R_D_processors;
EXIDIF;
IF (TA_memories <= 0) THEN (# not able to: REM(memories[2]))
TRANTO FT_processors{2]=FALSE,
TRASH_CAN_SIZE++
BY FAST R_D_processors;
ENDIF;
ELSE IF (ix = 3) THER
IF (W_memories(3]) THEN (* able to: WRM(memories[3]))
TRANTO FT_processors[3]1=FALSE,
W_memories[3]=FALSE (¢ #3: REN(processors[3]) -> WRN.REM(memories{3]) »),
TRASH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ERDIF;
IF (FP_memories{3]) THEN (* able to: PRM(memories{3]) »)
TRANTO FT_processors{3]=FALSE,

65

FP_memories[3]=FALSE (+ #3: REN(processors{3]) -> PRM.REN(memories(3])),
TRASH_CAN_SIZE=TRASH_CAN_SIZE+2
BY FAST R_D_processors;
ENDIF;
IF (FT_memories[3]) THEN (s able to: TRM(memories[3]) ¢)
TRANTO FT_processors[3]=FALSE,
FT_memories[3]=FALSE (+ #3: REM(processors(3]) -> TRN.REN(memorias{3])),
TRASH_CAN_SIZE=TRASH_CAB_SIZE+2
BY FAST R_D_processors;
EBDIF;
IF (TA_memories <= 0) THEE (* not able to: REM(memories(3]))
TRABTO FT_processors[3]=FALSE,
TRASK_CAN_SIZE++
BY FAST R_D_processors;

ENDIF;
ENDIF; ENDIF; ENDIF;
ENDIF;
ENDIF;

ENDFOR;

(=

. Assertions for dedicated "“processors' spares
*)

ASSERT NUC_processors <= NS_processors;
ASSERT (NWS_processors + NFS_processors) <= ESI_processors;

IF (NNS_processors > 0) THEN (* Arrival of “processors” spare fault #)
TRANTO BVWS_processors-- ,NFS_processors++ NCF++
BY NWS_processors¢L_S_processors;
ENDIF;

(»
. General Death’s for component 'processors’
.

*)

DEATHIF TFA_processors >= TWA_processors; (¢« MAJ(processors) ¢)

(e - » "eee)
((L1 .)
(€1 1) %)
(s++ COMPONENT: “memories" #%s)
(s [TT))
(-)
(oo nnndesn - »)

(e

. Assertions for component “memories"

*)

ASSERT TA_memories >= TWA_memories;
ASSERT TA_memories >= TFA_memories;
ASSERT (TWA_memories + TFA_memories) <= NI_memories;
ASSERT (TWA_memories + TFA_memories) = TA_memories;

(=
. For each part in component “memories"

66

*)

FOR ix IN [1..NI_memories]
ASSERT A_memories(ix) OR (§oT W_memories[ix]);
ASSERT COUNT(FP_memories[ix]) + COUNT(FT_memoriesix]) <= 1;
ASSERT COUBT(VM_memories[ix]) +
COUNT(FP_memories[ix]) + COUNT(FT._memories[ix])

<= 1;
(=
* Fault Arrivals for component “memories”
L ma—=- - - -
*)

IF (W_memories(ix]) THEN (* Fault arrivals %)

(»
L] Permanent fault arrivals

*)

TRANTD W_memories[ix]=FALSE ,FP_memories [ix]=TRUE ,JFT_memories [ix]oFT_memories [ix],

NCF++
BY L_P_memories; (*+ Permanent fault arrival »)

(»

- Transient fault arrivals

*)

TRANTO H_uouories[ix]-FALSE.FT_-cnorics[ix]-TRUE,FP.lo-oriOIEix]l’?_-nloriou[1:],
NCF++
BY L_T_memories; (s Transient fault arrival)
ENDIF;

IF (FT_memories[ix]) (» Transient faults go permanent)
TRANTO FT_ucnori.s[ix]-FALSE,FP_ncloti.l[ix]-TlU!,
NCF++
BY L_P_memories; (* Transient to Permanent fault arrival »)

(»

. Transients disappear for “memories"

IF (FT_memories{ix]) THEN (s Transient faults ¢)
TRANTO FT_nenorien[ix]'FALSE,H_nenories[ix]-TRUE
BY FAST DIS_memories; (* Transient disappears ¢)
ENDIF;

(=

. Degrade component “memories'

*)

IF (FA_memories(ix)) THEN
(e
. degrade by one
*)
IF (FP_memories[ix]) THEN
TRANTO FP_memories[ix]=FALSE,

67

TRASH_CAN_SIZE++
BY FAST R_D_memories;
EEDIF;
IF (FT_memories[ix]) THEN
TRANTC FT_memories[ix]=FALSE,
TRASH_CAN_SIZE++
BY FAST R_D_memories;
EBDIF;
ENDIF;

ENDFOR;

(»

. General Death’s for component "memories’

*)

DEATHIF TFA_memories >= TWA_memories; (» MAJ(memories) »)

()
(ons)
(eee "e)
(sss COMPONENT: ‘“bus" s3)
(ens "es)
(.)
(eavsusones)

(»

. Assertions for component "“bus"

.

.)

ASSERT TA_bus >= TWA_bus;
ASSERT TA_bus >» TFA_bus;

IF (NW_bus > 0) (= Fault arrivals »)
TRANTO W¥_bus--,
ECF++
BY B¥W_bus*L_P_bus; (* Permanent fault arrival s)

(=
. General Death’s for component “bus”
*
*)

DEATHIF TFA_bus >= TWA_bus; (» MAJ(bus) »)

(ssnssnnne .)
(sesssssasnsses)
(ene ses)
(ess MNISC. DEATH & PRUNE e¢es)
(»es ee)
()
(L1)

PRUNEIF NCF > Prune_After;

68

F A ed
REPORT DOCUMENTATION PAGE OMB Ne, 0704-0188

Public reporting burden for this coliection of information is estimated to average 1 hour per response, including the time for reviewing instructi hing existing data sources,
gatharing and maintaining the data needed, and completing and reviewing the coliection of int ion. Send ts regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jetferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and 10 the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1994 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
TOTAL User Manual WU 505-64-10-07
6. AUTHOR(S)

Sally C. Johnson
David P. Boerschlein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23681-0001

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER
Washington, DC 20546-0001 NASA TM-109101

11. SUPPLEMENTARY NOTES

Sally C. Johnson: Langiey Research Center, Hampton, VA
David P. Boerschlein: Lockheed Engineering & Sciences Company, Hampton, VA

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified-Unlimited

Subject Category 62

13. ABSTRACT (Maximum 200 words)

Semi-Markov models can be used to analyze the reliability of virtually any fault-tolerant system. However, the process of
delineating all of the states and transitions in the model of a complex system can be devastatingly tedious and error-prone.
Even with tools such as the Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST), the user must
describe a system by specifying the rules govering the behavior of the system in order to generate the model. With the
Table Oriented Translator to the ASSIST Language (TOTAL), the user can specify the components of a typical system and
their attributes in the form of a table. The conditions that lead to system failure are also listed in a tabular form. The user
can also abstractly specify dependencies with causes and effects. The level of information required is appropriate for
system designers with little or no background in the details of reliability calculations. A menu-driven interface guides the
user through the system description process, and the program updates the tables as new information is entered. The
TOTAL program automatically generates an ASSIST input description to match the system description.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Reliability Analysis, Fault Tolerance 73
16. PRICE CODE
A04
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

