432 research outputs found

    Technology assessment of biomass ethanol : a multi-objective, life cycle approach under uncertainty

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2006.Includes bibliographical references (p. 210-219).A methodology is presented for assessing the current and future utilization of agricultural crops as feedstocks for the production of transportation fuels, specifically, the use of corn grain and stover for ethanol production. The generic methodology integrates chemical process design and decision analysis tools. Four primary concepts are incorporated to address the performance of technologies and policies: 1) expansion of the system boundaries to include the entire process life cycle, 2) incorporation of both economic and environmental metrics for multi-objective optimization with tradeoff analysis using Pareto curves, 3) explicit incorporation of uncertainty analysis using Bayesian updating, and 4) integration of multiple feedstocks, processes, and products, in a network optimization framework, with subsequent decomposition to more refined models, for an improvement assessment of specific research and development goals. The first step is an assessment of the emerging corn grain ethanol industry in the U.S. Using life cycle assessment with Bayesian uncertainty propagation, the net energy balance of corn grain ethanol production is calculated and shown to be slightly positive.(cont.) The variability in the system suggests that this variance is dependent primarily on corn production location, distribution requirements, and ethanol conversion and purification efficiency lead to the significant variance. From an economic performance, an optimized facility can produce ethanol competitively with gasoline at $55/barrel, on an unsubsidized and energy equivalent basis. The life cycle greenhouse gas emissions decrease of - 5% - 30% between gasoline and ethanol on a miles driven basis. A potential modification to the process is the use of an alternative feedstock, such as lignocellulosic waste and residues, which have larger resource availability and lower economic cost. Compared to the original case, cellulosic ethanol would have a higher net energy ratio with lower greenhouse gas emissions, but the current projected economic costs are prohibitive. An improvement analysis of potential technology advancements using multiple object network optimization across the entire supply chain suggests that research and development should focus on feedstock logistics and the pretreatment stage.by Jeremy C. Johnson.Ph.D

    Finding Diagnostically Useful Patterns in Quantitative Phenotypic Data.

    Get PDF
    Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∼40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≥10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a "phenotype first" approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Survival and quality of life impact of a risk-based allocation algorithm for deceased donor kidney transplantation

    No full text
    To determine the incremental gains in graft and patient survival under a risk-based, deceased donor kidney allocation compared to the current Australian algorithm.Risk-based matching algorithms were applied to first graft, kidney only recipients (n=7513) transplanted in Australia between 1994 and 2013. Probabilistic models were used to compare the waiting time, life and quality-adjusted life years and graft years between the 8 risk-based allocation strategies against current practice.Compared to current practice, KDRI-EPTS matching of the lowest 20% of scores reduced median waiting time by 0.64 years (95% CI: 0.52-0.73) for recipients aged ≤ 30 years, but increased waiting time by 0.94 years (95% CI: 0.79 - 1.09) for recipients aged > 60 years. Among all age groups, the greatest gains occurred if KDRI-EPTS matching of the lowest 30% of scores was used, incurring a median overall gain of 0.63 (95% CI: 0.03-1.25) life years and 0.78 (95% CI: 0.30 - 1.26) graft years compared to current practice. A median gain in survival of 1.91 years for younger recipients (aged 30-45 years) was offset by a median reduction in survival (by 0.95 life years) among the older recipients. Prioritisation of lower quality donor kidneys for older candidates reduced the waiting time for recipients aged > 45 years, but no changes in graft and patient survivals were observed.Risk-based matching engendered a moderate, overall increase in graft and patient survival, accrued through benefits for recipients aged ≤ 45 years but disadvantage to recipients aged > 60 years

    Pathogenicity and selective constraint on variation near splice sites

    No full text
    Mutations which perturb normal pre-mRNA splicing are significant contributors to human disease. We used exome sequencing data from 7,833 probands with developmental disorders (DD) and their unaffected parents, as well as >60,000 aggregated exomes from the Exome Aggregation Consortium, to investigate selection around the splice site, and quantify the contribution of splicing mutations to DDs. Patterns of purifying selection, a deficit of variants in highly constrained genes in healthy subjects and excess de novo mutations in patients highlighted particular positions within and around the consensus splice site of greater functional relevance. Using mutational burden analyses in this large cohort of proband-parent trios, we could estimate in an unbiased manner the relative contributions of mutations at canonical dinucleotides (73%) and flanking non-canonical positions (27%), and calculated the positive predictive value of pathogenicity for different classes of mutations. We identified 18 patients with likely diagnostic de novo mutations in dominant DD-associated genes at non-canonical positions in splice sites. We estimate 35-40% of pathogenic variants in non-canonical splice site positions are missing from public databases
    corecore