16 research outputs found

    A study of starch resources with high-amylose content from five Chinese mutant banana species

    Get PDF
    Investigation on staple crop starch of new species has been becoming the research focus of scholars at present. Based on this, the physicochemical properties and microstructural characteristics of starches isolated from Chinese mutant Musa acuminata Colla acuminata and double balbisiana (MA), Musa double acuminata cv. Pisang Mas (MAM), Musa acuminata cv. Pisang Awak (MAA), and Musa Basjoo Siebold (MBS), and Musa double acuminata and balbisiana-Prata (MAP) were investigated. Results exhibited that all starches exhibited high content of amylose (34.04–42.59%). According to the particle size, they were divided into medium (MA, MAM) (14.54–17.71 μm) and large (MAA, MBS, MAP) (23.01–23.82 μm) group. The medium group with A-type crystallization showed higher peak viscosity (PV), final viscosity, gel fracturability and gel hardness. For large group with B-type crystallization, the compact particle morphology, higher degree of crystallinity, short range order, gelatinization enthalpy, pasting temperature, lower porosity, water absorption capacity (WAC) and oil absorption capacity were found. In addition, the medium group with higher PV and gel hardness could be used as food thickening or gelling agents. The large group with higher Rc, short-range order, lower porosity and WAC could be potential to become raw material for resistant starch. All results showed the amylose content, had significant effect on the microstructure and physicochemical properties of starch samples. Outcomes in this investigation might provide a basis of theoretical application for industrial food production

    Multikingdom interactions govern the microbiome in subterranean cultural heritage sites

    Get PDF
    9 páginas.- 5 figuras.- 66 referencias.- Data Availability. The amplicon sequences, shotgun metagenomics, and screened Actinobacteria strain sequences reported in this article have been deposited in the NCBI BioProject and GenBank databases (accession nos. PRJNA721777, PRJNA745276, and OL444665 to OL444682, respectively). All other study data are included in the article and/or supporting informationMicrobial biodeterioration is a major concern for the conservation of historical cultural relics worldwide. However, the ecology involving the origin, composition, and establishment of microbiomes on relics, once exposed to external environments, is largely unknown. Here, we combined field surveys with physiological assays and biological interaction experiments to investigate the microbiome in the Dahuting Han Dynasty Tomb, a Chinese tomb with more than 1,800 y of history, and its surrounding environments. Our investigation finds that multikingdom interactions, from mutualism to competition, drive the microbiome in this subterranean tomb. We reveal that Actinobacteria, Pseudonocardiaceae are the dominant organisms on walls in this tomb. These bacteria produce volatile geosmin that attracts springtails (Collembola), forming an interkingdom mutualism, which contributes to their dispersal, as one of the possible sources into the tomb from surrounding environments. Then, intrakingdom competition helps explain why Pseudonocardiaceae thrive in this tomb via the production of a mixture of cellulases, in combination with potential antimicrobial substances. Together, our findings show that multikingdom interactions play an important role in governing the microbiomes that colonize cultural relics. This knowledge is integral to understanding the ecological and physiological features of relic microbiomes and to supporting the relics’ long-term conservation.This work was supported by the National Key R&D Program (2019YFC1520700), the National Natural Science Foundation of China (42177297), Chinese Academy of Sciences (CAS) Strategic Priority Research Program Grant XDA28010302, and the Youth Innovation Promotion Association, CAS (Member No. 2014271). M.D.-B. is supported by a Ramón y Cajal Grant (RYC2018-025483-I), a project from the Spanish Ministry of Science and Innovation (PID2020-115813RA-I00), and Project Plan Andaluz de Investigación, Desarrollo e Innovación 2020 from the Junta de Andalucía (P20_00879).Peer reviewe

    The impact of the atmospheric turbulence-development tendency on new particle formation : a common finding on three continents

    Get PDF
    A new mechanism of new particle formation (NPF) is investigated using comprehensive measurements of aerosol physicochemical quantities and meteorological variables made in three continents, including Beijing, China; the Southern Great Plains site in the USA; and SMEAR II Station in Hyytiala, Finland. Despite the considerably different emissions of chemical species among the sites, a common relationship was found between the characteristics of NPF and the stability intensity. The stability parameter (zeta = Z/L, where Z is the height above ground and L is the Monin-Obukhov length) is found to play an important role; it drops significantly before NPF as the atmosphere becomes more unstable, which may serve as an indicator of nucleation bursts. As the atmosphere becomes unstable, the NPF duration is closely related to the tendency for turbulence development, which influences the evolution of the condensation sink. Presumably, the unstable atmosphere may dilute pre-existing particles, effectively reducing the condensation sink, especially at coarse mode to foster nucleation. This new mechanism is confirmed by model simulations using a molecular dynamic model that mimics the impact of turbulence development on nucleation by inducing and intensifying homogeneous nucleation events.Peer reviewe

    Towards a global partnership model in interprofessional education for cross-sector problem-solving

    Get PDF
    Objectives A partnership model in interprofessional education (IPE) is important in promoting a sense of global citizenship while preparing students for cross-sector problem-solving. However, the literature remains scant in providing useful guidance for the development of an IPE programme co-implemented by external partners. In this pioneering study, we describe the processes of forging global partnerships in co-implementing IPE and evaluate the programme in light of the preliminary data available. Methods This study is generally quantitative. We collected data from a total of 747 health and social care students from four higher education institutions. We utilized a descriptive narrative format and a quantitative design to present our experiences of running IPE with external partners and performed independent t-tests and analysis of variance to examine pretest and posttest mean differences in students’ data. Results We identified factors in establishing a cross-institutional IPE programme. These factors include complementarity of expertise, mutual benefits, internet connectivity, interactivity of design, and time difference. We found significant pretest–posttest differences in students’ readiness for interprofessional learning (teamwork and collaboration, positive professional identity, roles, and responsibilities). We also found a significant decrease in students’ social interaction anxiety after the IPE simulation. Conclusions The narrative of our experiences described in this manuscript could be considered by higher education institutions seeking to forge meaningful external partnerships in their effort to establish interprofessional global health education

    Differentiating the Contributions of Particle Concentration, Humidity, and Hygroscopicity to Aerosol Light Scattering at Three Sites in China

    No full text
    The scattering of light by aerosol particles dictates atmospheric visibility, which is a straightforward indicator of air quality. It is affected by numerous factors, such as particle number size distribution, particle mass concentration (PM2.5), ambient relative humidity (RH), and chemical composition. The latter two factors jointly influence the aerosol liquid water content (ALWC). Here, the particle backscattering coefficient (βp) under ambient RH conditions is investigated to differentiate and quantify the contributions of aerosol properties and meteorology using comprehensive observational datasets acquired at three megacities in China, that is, Beijing (BJ), Nanjing (NJ), and Guangzhou (GZ). Overall, the temporal variations in βp under ambient RH conditions are consistent with those in ALWC at the three sites. The PM2.5 in BJ is systematically higher than in NJ and GZ, while ambient RH and aerosol hygroscopicity in NJ are much higher than in BJ and GZ. Notable differences in the variations of βp with related factors at the three sites are demonstrated. βp is more sensitive to particle hygroscopicity and mass in NJ and ambient RH in BJ. The relative contributions of these factors to βp at the three sites under different pollution conditions are differentiated and quantified. The factor with the largest impact on the variability in βp shifts from particle mass to ambient RH as air quality deteriorated to heavy pollution in BJ. The opposite is true in NJ. In GZ, the contributions of these factors to changes in βp under different pollution conditions are similar, both dominated by PM2.5.https://doi.org/10.1029/2022JD03689
    corecore