35 research outputs found

    The hydroecology of groundwater-fed streams in a glacierised catchment

    Get PDF
    Groundwater flow typically provides stable stream habitat within glacierised floodplains. However, spatio-temporal differences within and between groundwater flow pathways can create marked variability in the physicochemical characteristics of groundwater-fed streams. Research conducted on a floodplain terrace of the Toklat River, Denali National Park, Alaska, predominantly from May to September 2008, determined the influence of groundwater flow dynamics upon benthic and hyporheic macroinvertebrate assemblages. During periods of resource depletion benthic macroinvertebrate abundance was dependent upon contributions from specific flow pathways (DFSdeep), which supplied fine particulate organic matter. Dynamics of groundwater flow pathways influenced macroinvertebrates throughout the summer, however, with higher diversity observed in perennial streams which received groundwater flow from DFSdeep. Ephemeral flow pathways of glacial seepage supported lower diversity. Within the hyporheic zone, environmental stability of surface waters was influential, as this reflected the sub-surface residence time of percolating waters; nested routes of flow within each flow pathway, of varying length or permeability, created differences in the environmental stability of each stream. Macroinvertebrate diversity in the hyporheic zone was higher at sites of lower surface environmental stability, suggesting possible migration into the hyporheic zone. Digital remote sensing used to estimate the spatial extent of groundwater upwellings within two national parks in Alaska indicated that these groundwater-fed habitats are widespread

    Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    Get PDF
    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans

    Modelling phosphorus in Lake Simcoe and its subcatchments: scenario analysis to assess alternative management strategies

    Get PDF
    In Lake Simcoe (Ontario, Canada), anthropogenic phosphorus (P) loads have contributed to increased algal growth, low hypolimnetic dissolved oxygen concentrations, and impaired fish reproduction. Management targets to control eutrophication require an ambitious programme to reduce P loads to the lake. Remediation strategies rely upon an improved understanding of P sources and assessment of the effectiveness of different control options. Here we present an application of the integrated catchment model for phosphorus (INCA-P) to examine P sources across the Lake Simcoe watershed and simulate in-lake P concentrations. This is the first application of INCA-P to a complex watershed of this nature and the first to include a lake component. We evaluated a set of management actions to simulate anticipated effects of P reduction strategies on in-lake total phosphorus (TP) concentrations. The INCA-P scenarios show the difficulty of achieving large-scale reductions from the watershed, given the low rates of P export; however, the study shows that a multifaceted strategy, including fertilizer reduction, addition of buffer strips, more stringent controls on sewage treatment plant effluent, and reduced deposition of P to the lake surface, could achieve a 25% reduction in lake-water TP concentrations and produce TP close to the target of 0.01 mg L−1

    Phosphorus dynamics across intensively monitored subcatchments in the Beaver River

    Get PDF
    We report results from a spatially intensive monitoring and modelling study to assess phosphorus (P) dynamics in the Beaver River, a tributary of Lake Simcoe, Ontario. We established multiple monitoring stations (9 flow and 24 water quality stations) from headwaters to near the outflow that were operated for 2 field seasons, complementing longer term data from a flow monitoring site and water chemistry monitoring site. We applied the Branched-INCA-P model, which allows fully distributed simulations supported by highly distributed monitoring data. Using spatially distributed data helped better understand variable P and sediment dynamics across the catchment and identify key model uncertainties and uncertainties related to catchment P management. Measured and modelled total P concentrations often exceeded provisional water quality thresholds in many areas of the catchment and highlight the value of studying water quality across multiple subcatchments rather than at a single site. Total P export coefficients differed widely among subcatchments, ranging from 2.1–21.4 kg km-2 y-1 over a single year. Export coefficients were most strongly (negatively) related to the proportion of wetland cover in subcatchments. The INCA-P model captured spatial variation in P concentrations relatively well, but short-term temporal variability in the observed data was not well simulated across sites, in part due to unmodelled hydrological phenomena including beaver activity and unknown drivers of P peaks that were not associated with hydrological events

    Climate change and water in the UK : past changes and future prospects: a climate change report card for water: Working technical paper

    Get PDF
    Climate change is expected to modify rainfall, temperatures and catchment hydrological responses across the world, and adapting to these water-related changes is a pressing challenge. This paper reviews the impact of climate change on water in the UK and looks at projections of future change. The natural variability of the UK climate makes change hard to detect; only historical increases in air temperature can be attributed to climate change, but over the last fifty years more winter rainfall has been falling in intense events. Future changes in rainfall and evapotranspiration could lead to changed flow regimes and impacts on water quality, aquatic ecosystems and the water available for use by people. Summer flows may decrease on average, but floods may become larger and more frequent. Water quality may decline as a result of higher water temperatures, lower river flows and increased algal blooms. Water demand may increase in response to higher summer temperatures, placing additional pressure on water resources. These changes affect many parts of everyday life, emphasising the importance of long-term adaptation that takes these possible changes into account

    Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial.

    Get PDF
    BACKGROUND: Staphylococcus aureus bacteraemia is a common cause of severe community-acquired and hospital-acquired infection worldwide. We tested the hypothesis that adjunctive rifampicin would reduce bacteriologically confirmed treatment failure or disease recurrence, or death, by enhancing early S aureus killing, sterilising infected foci and blood faster, and reducing risks of dissemination and metastatic infection. METHODS: In this multicentre, randomised, double-blind, placebo-controlled trial, adults (≥18 years) with S aureus bacteraemia who had received ≤96 h of active antibiotic therapy were recruited from 29 UK hospitals. Patients were randomly assigned (1:1) via a computer-generated sequential randomisation list to receive 2 weeks of adjunctive rifampicin (600 mg or 900 mg per day according to weight, oral or intravenous) versus identical placebo, together with standard antibiotic therapy. Randomisation was stratified by centre. Patients, investigators, and those caring for the patients were masked to group allocation. The primary outcome was time to bacteriologically confirmed treatment failure or disease recurrence, or death (all-cause), from randomisation to 12 weeks, adjudicated by an independent review committee masked to the treatment. Analysis was intention to treat. This trial was registered, number ISRCTN37666216, and is closed to new participants. FINDINGS: Between Dec 10, 2012, and Oct 25, 2016, 758 eligible participants were randomly assigned: 370 to rifampicin and 388 to placebo. 485 (64%) participants had community-acquired S aureus infections, and 132 (17%) had nosocomial S aureus infections. 47 (6%) had meticillin-resistant infections. 301 (40%) participants had an initial deep infection focus. Standard antibiotics were given for 29 (IQR 18-45) days; 619 (82%) participants received flucloxacillin. By week 12, 62 (17%) of participants who received rifampicin versus 71 (18%) who received placebo experienced treatment failure or disease recurrence, or died (absolute risk difference -1·4%, 95% CI -7·0 to 4·3; hazard ratio 0·96, 0·68-1·35, p=0·81). From randomisation to 12 weeks, no evidence of differences in serious (p=0·17) or grade 3-4 (p=0·36) adverse events were observed; however, 63 (17%) participants in the rifampicin group versus 39 (10%) in the placebo group had antibiotic or trial drug-modifying adverse events (p=0·004), and 24 (6%) versus six (2%) had drug interactions (p=0·0005). INTERPRETATION: Adjunctive rifampicin provided no overall benefit over standard antibiotic therapy in adults with S aureus bacteraemia. FUNDING: UK National Institute for Health Research Health Technology Assessment

    Satisfaction with performance appraisal systems

    No full text

    A New, Catchment-Scale Integrated Water Quality Model of Phosphorus, Dissolved Oxygen, Biochemical Oxygen Demand and Phytoplankton: INCA-Phosphorus Ecology (PEco)

    Get PDF
    Process-based models are commonly used to design management strategies to reduce excessive algal growth and subsequent hypoxia. However, management targets typically focus on phosphorus control, under the assumption that successful nutrient reduction will solve hypoxia issues. Algal responses to nutrient drivers are not linear and depend on additional biotic and abiotic controls. In order to generate a comprehensive assessment of the effectiveness of nutrient control strategies, independent nutrient, dissolved oxygen (DO), temperature and algal models must be coupled, which can increase overall uncertainty. Here, we extend an existing process-based phosphorus model (INtegrated CAtchment model of Phosphorus dynamics) to include biological oxygen demand (BOD), dissolved oxygen (DO) and algal growth and decay (INCA-PEco). We applied the resultant model in two eutrophied mesoscale catchments with continental and maritime climates. We assessed effects of regional differences in climate and land use on parameter importance during calibration using a generalised sensitivity analysis. We successfully reproduced in-stream total phosphorus (TP), suspended sediment, DO, BOD and chlorophyll-a (chl-a) concentrations across a range of temporal scales, land uses and climate regimes. While INCA-PEco is highly parameterized, model uncertainty can be significantly reduced by focusing calibration and monitoring efforts on just 18 of those parameters. Specifically, calibration time could be optimized by focusing on hydrological parameters (base flow, Manning's n and river depth). In locations with significant inputs of diffuse nutrients, e.g., in agricultural catchments, detailed data on crop growth and nutrient uptake rates are also important. The remaining parameters provide flexibility to the user, broaden model applicability, and maximize its functionality under a changing climate
    corecore