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Abstract 

Groundwater flow typically provides stable stream habitat within glacierised floodplains. 

However, spatio-temporal differences within and between groundwater flow pathways can 

create marked variability in the physicochemical characteristics of groundwater-fed streams. 

Research conducted on a floodplain terrace of the Toklat River, Denali National Park, Alaska, 

predominantly from May to September 2008, determined the influence of groundwater flow 

dynamics upon benthic and hyporheic macroinvertebrate assemblages. 

During periods of resource depletion benthic macroinvertebrate abundance was dependent 

upon contributions from specific flow pathways (DFSdeep), which supplied fine particulate 

organic matter. Dynamics of groundwater flow pathways influenced macroinvertebrates 

throughout the summer, however, with higher diversity observed in perennial streams 

which received groundwater flow from DFSdeep. Ephemeral flow pathways of glacial seepage 

supported lower diversity.  

Within the hyporheic zone, environmental stability of surface waters was influential, as this 

reflected the sub-surface residence time of percolating waters; nested routes of flow within 

each flow pathway, of varying length or permeability, created differences in the 

environmental stability of each stream. Macroinvertebrate diversity in the hyporheic zone 

was higher at sites of lower surface environmental stability, suggesting possible migration 

into the hyporheic zone. Digital remote sensing used to estimate the spatial extent of 

groundwater upwellings within two national parks in Alaska indicated that these 

groundwater-fed habitats are widespread. 
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1.Introduction 

It has been established that within glacierised catchments, streams deriving flow from 

groundwater may support higher ecological diversity (Brown et al., 2007), due to associated 

increased habitat stability. However when groundwater is considered as a stable feature, the 

established physicochemical dynamics of groundwater systems, reflecting variability within 

and between groundwater flow pathways, are overlooked. Such variability could influence 

macroinvertebrate communities. A better understanding of the complex hydro-ecological 

interactions occurring within glacierised catchments is required, to establish groundwater as 

a dynamic influence upon freshwater ecosystems. By studying the macroinvertebrate 

communities of seven streams fed solely by upwelling groundwater, within a glacierised 

catchment, this study addresses research gaps with respect to groundwater as a dynamic 

influence upon freshwater ecosystems.  
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1.1 Introduction 

There is a relative paucity of research considering shallow groundwater hydrology within 

glacierised catchments (Robinson et al., 2009), likely due to the relative inaccessibility of 

study areas (Tockner et al., 2002). However knowledge of groundwater:surface water 

interactions in these environments is essential in understanding the influence of 

groundwater-fed streams upon freshwater ecosystems, and the potential implications of 

climate change-associated glacial recession (Brown et al., 2007a; Robinson et al., 2009). 

Glacial recession is predicted, in the long term, to result in an increase in the percentage of 

groundwater contribution to glacierised catchments (Brown et al., 2007a; Milner et al., 

2009), following the eventual depletion of frozen water stores and reduction in meltwater 

supply (Clow et al., 2003). Furthermore, ecological research in these environments has 

focused largely upon glacial meltwater (Brown et al., 2007), and patterns of 

macroinvertebrate communities with distance from the glacial terminus (e.g. Milner et al., 

2001; Ilg and Castella, 2006; inter alia). Few studies within glacierised catchments have 

considered the ecological significance of groundwater contributions; Brown et al (2007) 

therefore suggest the need for an integrated study between a) contributions from different 

water sources, b) physicochemical habitat and c) stream biota. 

The composition and function of many freshwater ecosystems is dependent upon 

groundwater (Hattan and Evans, 1998; Murray et al., 2004; Boulton and Hancock, 2006; 

Murray et al., 2006), which is typically characterised by low variability in flow and 

temperature (Brunke and Gonser, 1997), and high water clarity. Where shallow groundwater 

supplies stream flow, hotspots of high nutrient concentrations may result (Coleman and 

Dahm, 1990). The difference between surface and groundwater-fed streams is particularly 
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marked within glacierised catchments, as streams fed by glacial meltwater and snow-melt 

demonstrate extreme daily flow and temperature amplitudes, and high turbidity (Fureder et 

al., 1998; Malard et al., 2001). Groundwater-fed streams therefore generally support higher 

ecological diversity, providing habitats for macroinvertebrate communities (Stanford and 

Ward, 1993; Boulton et al., 1998; Barquin and Death, 2006). These communities have key 

roles in nutrient cycling (Merritt et al., 1984) and are influential in the functioning of riverine 

ecosystems (Cummins, 1974; Cummins and Klug, 1979). 

However a number of significant research gaps remain; groundwater is typically considered 

to be relatively homogenous (Poole et al., 2006), and established physicochemical variability 

within groundwater systems (Malard et al., 1999; Ward et al., 1999) and its influence upon 

macroinvertebrates has been overlooked. Groundwater may originate from several different 

sources (glacial, snow-melt and rainfall) (Brown et al., 2007), and follow a variety of 

individual flow pathways (Robinson et al., 2009). The residence time of groundwater may 

vary within and between these flow pathways, influencing the degree to which water clarity, 

and stability of flow and temperature regimes are increased (Brunke and Gonser, 1997). In 

addition, flow permanence of groundwater streams may be determined not only by 

characteristics of water sources and flow pathways, but also by the local topography 

(Sophocleous, 2002), for example the position of a stream relative to fluctuating water table 

elevations. Organic matter concentrations of each flow pathway may also vary, depending 

on the proximity to vegetation, and the residence time and velocity of groundwater flow 

(Boissier and Fontvieille, 1995; Brown et al., 1999). Each of these factors may affect 

macroinvertebrate abundance and diversity.  
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A better understanding of the complex hydro-ecological interactions occurring within 

glacierised catchments is required, to establish groundwater as a dynamic influence upon 

freshwater ecosystems. This research therefore focuses upon the effects of local spatial and 

temporal variability in groundwater flow dynamics upon benthic and hyporheic 

macroinvertebrate communities. Research was undertaken in the Toklat River Basin, Denali 

National Park, Alaska, on several streams situated upon a fluvial terrace, fed solely by 

upwelling groundwater (Fig. 1).  
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Fig. 1: Site photographs depicting A) the fluvial terrace, elevated above the current active glacial floodplain, and the contrast in water clarity between 

groundwater-fed streams and the main glacial channel; B) the geographical extent of the groundwater-fed streams 

5 
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1.2 Groundwater flow pathways  

Current research has highlighted marked local physicochemical differences between 

groundwater-fed streams (Ward et al., 1999), reflecting, in part, differences within and 

between subsurface flow pathways of glacierised catchments. Flow pathways form between 

permeable facies units, which are typically found within valley bottom fluvio-glacial deposits, 

valley-side colluvial deposits, and bedrock aquifers (Robinson et al., 2008; Clow et al., 2003). 

Within an individual flow pathway, flow regimes and residences times may vary, reflecting 

several nested routes of flow created by the locally variable, discontinuous subterranean 

structure of the hydrogeologic facies (Anderson, 1989). These routes of groundwater flow, 

nested within a single flow pathway, are subsequently referred to as a flow route (Fig. 2). 

Flow route length has been linked to variability in temperature and flow attenuation (Brunke 

and Gonser, 1997), whereby diurnal variations of groundwater-fed streams fed by rhithral 

(snow-melt) or kryal (ice-melt) sources become increasingly reduced and out of phase with 

those of the source waters. Where there are significant differences in flow routes between 

individual groundwater-fed streams, corresponding variations in flow attenuation may be 

determined (e.g Hoehn and Cirpka, 2006). Additionally, flow attenuation may be temporarily 

reduced where preferential flow pathways develop between highly permeable 

hydrogeological facies units, predominantly during saturation (Sidle et al., 2000).   

Differences between streams in attenuation of stream flow can result in marked differences 

in stream bed porosity; for example greater variability in stream flow may result in reduced 

sediment compaction (Brunke and Gonser, 1997) and increased local permeability (Fowler 

and Death, 2001). Flow regimes may also influence scouring and deposition of rocks, in 

addition to their angularity and brightness. Here the bottom component of the index of
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Fig.2: Flow pathways and nested flow routes within a glacierised catchment (adapted from Anderson, 1989) 

7 



Pfankuch stability can be used as an indicator of differences in channel stability between 

areas (Pfankuch, 1975; Death and Winterbourn, 1994; Brittain et al., 2001). 

Local variability between groundwater-fed streams may also reflect differences between 

flow pathways. Groundwater flow pathways and topographical location can influence 

stream flow permanence (Ward et al., 1999). Ephemeral subsurface seepage is typically 

associated with the main glacial river channel (Parriaux and Nicoud, 1990; Ward et al., 1999), 

whereas perennial baseflow might be derived from flow pathways with a longer residence 

time, such as deep within the valley side (Clow et al., 2003). However, water tables within 

glacierised catchments fluctuate markedly with seasonal glacial ablation (Robinson et al., 

2008), and only channels sufficiently close to the water table at its minimum level in winter 

will demonstrate perennial flow. 

Water flow pathways may also influence the amount of organic matter contained within the 

groundwater-fed stream. Groundwater may entrain organic matter by throughflow (Boissier 

and Fontvielle, 1995); accordingly if the pathway directs flow through areas with more dense 

vegetation, or flow rate is rapid, organic matter entrainment will be higher. Flow pathways 

within valley-sides might therefore be expected to contain higher organic matter 

concentrations than those passing through glacial floodplains, which have very little 

vegetation (Richmond, 1960). 

1.3 Ecological influence 

Benthic macroinvertebrates are sensitive to environmental conditions, including water 

temperature (Hynes, 1970; Milner and Petts, 1994), flow velocity (Edington, 1968; James et 

al., 2008), stream bed porosity (Olsen and Townsend, 2003), organic matter abundance 
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(Anderson and Sedell, 1979; Lepori and Malmqvist, 2007), flow permanence (McCabe, 1998) 

and the variability of these factors over time (Hax and Golladay, 1998). Macroinvertebrate 

distributions might therefore be expected to be influenced by marked heterogeneity in 

these variables between streams, reflecting differences in groundwater flow pathways. 

The relationships between environmental variables of streams and macroinvertebrates are 

not limited to surface waters, but extend downwards into the hyporheic zone (Boulton et al., 

1998), as macroinvertebrates seek refuge from the relative instability of surface conditions. 

The hyporheic zone is an area of transition situated beneath streams, composed of saturated 

sediments where mixing of groundwater and surface-water occurs (Schwoerbel, 1961). The 

use of the hyporheic zone as a refuge has been predominantly investigated in relation to a 

response to discrete disturbance events within surface streams (Fowler and Death, 2001). 

However, macroinvertebrates are also influenced by environmental variability (Death and 

Winterbourn, 1995). The influence upon hyporheic macroinvertebrate communities of 

groundwater flow dynamics, creating marked local differences in stream stability, 

hydrological regime, and water chemistry, has not yet been determined. It is unclear, for 

example, whether the degree of environmental variability caused by differences in flow 

pathways and lengths of flow routes might be sufficient to give rise to specific differences in 

groundwater fauna between groundwater-fed streams.  

By investigating the influence of groundwater flow dynamics upon macroinvertebrate 

communities, this study will address research gaps on the wider effects of groundwater 

streams on macroinvertebrate communities within glacierised catchments. By conducting 

research within a subarctic catchment on several groundwater-fed streams, this project aims 

to gain a better understanding of the intrinsic eco-hydrological interactions operating within 
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glacierised catchments. Research of this nature will enhance our understanding of 

glacierised catchments as early warning systems for climate change. 

1.4 Aims and objectives 

The overall aim of the research was to determine how groundwater flow dynamics 

influence macroinvertebrate communities within a glacierised catchment. In order to 

address this, the specific objectives of the research were to: 

 characterise the physicochemical characteristics of groundwater flow pathways 

within a fluvial terrace, and determine the degree of local variability in 

environmental stability; 

o establish the water sources and flow pathways associated with areas of 

groundwater-fed streams; and 

o determine local physicochemical variability in groundwater, and identifying 

key driving processes; 

o create an index of environmental stability, using key physicochemical 

variables.  

 determine the influence of variability in groundwater flow dynamics upon the 

benthic and hyporheic macroinvertebrate community;  

o determine associations between benthic macroinvertebrate community 

distribution and local physicochemical variables; 

o establish the relationships between individual benthic taxa and spatial and 

temporal groundwater dynamics; 
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o  establish the extent to which environmental stability (or additional 

physicochemical variables) of groundwater-fed streams influences 

macroinvertebrate distribution within the hyporheic zone 

o ascertain how ecological traits of individual taxa might determine different 

uses of the hyporheic zone 

 develop a methodology of groundwater upwelling site identification through remote 

sensing, in order to put the results of the study into context, and to facilitate future 

research within glacierised catchments; 

o use digital remote sensing to identify areas of groundwater upwellings within 

glacierised catchments; 

o assess the accuracy of the methodology; and 

o determine the extent of groundwater upwellings within Denali National Park, 

and compare the results with those of the adjacent National Park, Wrangell St 

Elias.  

Preliminary research was undertaken over a six week period during the summer of 2007 

(Appendix A), with the main study carried out from May to September, 2008. 

1.5 Methodology 

1.5.1 Field site 

To minimise the likelihood of encountering complicating anthropogenic influences when 

studying the physicochemistry of catchment hydrology, a study site within Alaska was 

selected for this research, as the environments of the National Parks are relatively pristine 

(Milner et al., 2006). The Toklat River catchment within Denali National Park was chosen due 

to ease of access. Although there are several extensively glacierised areas within Alaska, 
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offering potential study sites for this research, many are in extremely isolated areas 

(Robinson et al., 2009). A 148km mile road, stretching though the centre of Denali National 

Park, provided access to a fluvial terrace which supports an extensive network of 

groundwater-fed streams (Fig. 3), located only 3km from the road.  

The terrace, which is situated upon an active glacial floodplain, with multiple streams fed 

solely by groundwater, therefore offered an opportunity to study physicochemistry and 

macroinvertebrate communities at multiple sites.  

 

 

 

 

 

 

 

 

 

 
Figure 3: Network of groundwater fed streams on fluvial terrace, Toklat River catchment, Denali 

National Park 
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Figure 4: A) Key geomorphological features of the Toklat catchment B) Geology of the Toklat catchment and surrounding area (Wilson et 
al., 1998) 
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The geology and geomorphology of the Toklat catchment are locally highly variable. At the 

head of the catchment are several glaciers (Fig. 4A) underlain by calcareous and siliceous 

strata (Fig. 4B). Valley sides to the East and West, are predominantly extensively vegetated, 

and support isolated perched wetlands, which extend to within close proximity of the fluvial 

terrace. The geology of the valley sides is highly variable; to the East are several geological 

units (Fig. 4B), including Triassic calcareous sedimentary, Triassic submarine basalt, and 

Paleocene volcanic and sedimentary rocks. To the West the geology is primarily Triassic 

calcareous sedimentary. Due to the steep incline of the valley slopes, gravitational reworking 

of rockfall debris has formed debris fans and talus cones (Fig. 4A); only here was vegetation 

absent (Fig. 5). Snow packs were present at the summit of these valleys in May, though 

rapidly dispersed as the study season progressed. 

 

 

 

 

 

 

 

 

 Figure 5: Debris fan proximal to fluvial terrace, prior to completion of snowmelt 
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A braided glacial channel, the Toklat River, flows Northwards, across the valley bottom (Fig. 

6). The river flows around the Western and Northern banks of the terrace, forming an active 

floodplain, which is around 1,300m wide at the study site location. The unconsolidated silts, 

sands and gravel of the active floodplain are glacial, fluvial and colluvial in origin. 

 

 

 

 

 

 

 

 

 

Approximately 12km from the terminus of the glaciers lies a fluvial terrace, across which 

flow a network of groundwater-fed streams (Fig.7). The topography of the terrace is locally 

variable, and individual streams appear to emerge at points where the water table intersects 

the terrace surface. Ten groundwater-fed streams were studied, each with individual 

reaches of ~20m. Sites were chosen for their comparability; the channel bottom substrate 

within each study reach was similar, consisting of small to medium cobbles overlying coarse 

gravel. Bed morphology was also relatively homogenous, with no large riffle and pool 

sequences.  The locations of the groundwater-fed streams varied from those proximal to the 

Figure 6: Active floodplain of the Toklat River, (upstream orientation) 
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valley sides, termed A streams (Fig 8A-C and Fig. 9 A-D), to those closer to the main glacial 

meltwater channel, termed B streams (Fig 10 A-C), of which sites B2 and B3 were ephemeral 

(Fig. 7). 

 

The variety of potential water sources (snowmelt, rainfall and glacial meltwater) in close 

proximity to these sites made the terrace an ideal choice for research into variability in 

physicochemistry and macroinvertebrate communities between streams. 

Figure 7: Field site schematic 
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Figure 8: Site photographs of sites A) A1 B) A2 C) A3 

A B 

C 
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Figure 9: Site photographs of sites A) A4 B) A5 C) A6 D) A7 

A 

C 

B 

D 
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Figure 10: Site photographs of sites A) B1 B) B2 C) B3 

A B 

C 
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1.5.2 Data collection and analysis 

Due to the multidisciplinary nature of this study a combination of methods were 

implemented, including ecological, hydrological, chemical and digital remote sensing. During 

a six week preliminary field investigation in 2007 many of these methods were tested, and 

adapted, prior to their application in the main 16 week study season of 2008. 

1.5.2.1 Hydrology 

To establish the flow and temperature regimes of the groundwater-fed streams, in-stream 

water temperature and water pressure was recorded automatically at five of the sites (Fig. 7; 

A2, A4, B1, B2 and B3), using data loggers with pressure transducers and temperature 

loggers. Hyporheic temperatures were also monitored continuously at a depth of 20cm (A2 

and B1) and 50cm (B3). In 2008 sites B2 and B3 were determined to be ephemeral. Following 

this discovery, temperature loggers were left in-situ at multiple sites throughout June 2008 

to June 2009 to determine stream flow permanence. 

In 2007 several data loggers were lost throughout the study period due to animal attack, 

human interference and flooding. Data from this season was therefore sporadic, and a 

comparison of hydrological data between multiple sites was possible for only a very short 

period of time (Appendix Ai). In 2008 several steps were taken to mitigate these issues: all 

in-situ equipment was concealed with vegetation, covered in non-reflective grey plastic, and 

labelled as research property. In addition, multiple dataloggers were placed in glacial 

streams, to minimise data loss following bank collapse and flood damage. 

The hydraulic gradient at each site was established through measurements of hyporheic 

water levels in nested piezometers during 2008. Given the potential for large diurnal 
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variations in water levels within glacierised catchments, hyporheic water levels were 

monitored twice daily, at piezometer nests installed at all ten groundwater-fed sites (Fig. 7; 

A1, A2, A3, A4, A5, A6, A7, B1, B2 and B3). Each nest comprised two piezometers (5cm outer 

diameter, 0.4cm holes drilled over basal 6cm) installed to depths of 0.5 and 1m below the 

surface using an installation system described by Baxter et al., (2003). 

Also in 2008, on five occasions, surface water velocities and channel cross sections were 

determined at 10cm intervals across each groundwater-fed stream, at points adjacent to 

each piezometer nest. To determine individual channel cross sections, measurements of 

stream channel dimensions, river depth and flow velocity were taken (at 1/6 depth). The 

cross sections were used in conjunction with the water velocity measurements to create 

stream rating equations for each site. This enabled site discharge to be estimated 

continuously during the study period.  

At each site, substrate size was determined by measuring the b axis of 100 randomly 

selected stones (Burgherr et al., 2002) and D50 calculated. The bottom component of the 

Pfankuch Stability Index (PSI) was determined, incorporating scores for rock angularity, 

brightness, particle consolidation and size distribution, scouring and deposition, and 

abundance of aquatic vegetation (Pfankuch, 1975).  

1.5.2.2 Ecology 

Benthic macroinvertebrate samples were collected using a Surber sampler (mesh 330 µm), 

and preserved in 90% ethanol. During sampling in 2007 only five sites were sampled (A1, A5, 

B1, B2 and B3). Differences in abundance and diversity both between sites and between the 

two dates (July and August) were established (Appendix Aii). To further investigate spatial 
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and seasonal variability in macroinvertebrate distribution in 2008, it was decided to extend 

both the range of sites (to include A2 and A4), and the study period (macroinvertebrates 

were sampled every 4 weeks for 3 months). Sampling began at the downstream extent of 

the study reach, and progressed upstream; five replicate samples were taken at each site. 

Macroinvertebrates were identified to species wherever possible. 

Organic material, collected in the Surber sampler, was separated from the 

macroinvertebrates, and dried at 65oC. This was then sieved into coarse (>1mm) and fine 

(<1mm) fractions, prior to ashing in a furnace at 540oC for 2 hours.  Fine particulate organic 

matter (FPOM) and coarse particulate organic matter (CPOM) concentrations were 

calculated (mg/ m2) by determining the ash free dry mass. This is a method commonly used 

in ecological research (Scrimgeour and Winterbourn, 1989; Lancaster and Hildrew, 1993; 

Scarsbrook and Townsend, 1993) as organic matter concentrations associated with each 

replicate macroinvertebrate sample are determined. The five macroinvertebrate and organic 

matter replicates (FPOM and CPOM) at each site are expressed as average abundance (or 

concentration) per m2.  

Algal matter was also collected at these four week intervals from each site, from the upper 

surfaces of four randomly selected stones, in accordance with the method outlined by 

Ledger and Hildrew (1998). The surface was scrubbed with a toothbrush, and materials 

washed into a 24 ml polypropylene container. Stone surface area was recorded. Samples 

were stored in black bin liners to limit light interactions, and frozen. Upon analysis, samples 

were freeze dried, and chlorophyll pigments extracted in 90% acetone for 24 hours. 

Absorbance was determined at 750, 664, 647 and 630nm wavelengths using a 
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spectrophotometer. Concentrations of chlorophyll a, b, c and total chlorophyll were 

calculated using the Sterman (1988) equations, as outlined in Ledger et al (2006).  

Macroinvertebrates were sampled from the hyporheic zone, in both 2007 and 2008, from 

15cm and 30cm. In 2007 two alternative methods were trialled; colonisation pots, and pump 

sampling. Pump sampling was carried out through the installation of white PVC tubes (5cm 

in diameter, with a series of 0.4cm perforations drilled along the basal 6cm) to 15cm and 

30cm depths within the stream bed. After six weeks a hand-pump was used to extract 0.5 

litres of water from the tubes; Hunt and Stanley (2000) identified 0.5 litres as containing the 

best quantitatively representative sample of macroinvertebrates. However, several 

uncertainties were identified in pump sampling during 2007, which led to the favouring of 

the colonisation pot method in 2008. These issues included a difficulty in establishing the 

precise depth from which water was being sampled (Pusch et al., 1998), which would likely 

depend on suction velocity and pressure; these variables are difficult to control with a hand-

pump. In addition there was the potential for macroinvertebrates to cling to substrates, and 

thus for preferential sampling of particular taxa (Fraser and Williams, 1997). As a result of 

this, or perhaps due to siltation of the piezometer perforations, no macroinvertebrates were 

recovered through the piezometer suction method. 

 In 2007 colonisation pots consisting of pairs of cylindrical steel cages (15cm in height, 8cm 

diameter, mesh size 1cm2), were inserted into the river bed, at adjacent points, to depths of 

15 & 30cm. Individual pots were used to prevent macroinvertebrate movement between 

depths during extraction. Holes were excavated by hand to the appropriate depth, and each 

colonisation pot was packed with sediment in stratigraphic order. Due to the coarse 

substrate (small to medium cobbles overlying coarse gravel), coring methods could not be 
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used to insert the pots. Pots were inserted in the holes, and the remaining substrate was 

placed around pot margins and over the top, whilst ensuring that the cable extended to the 

surface. Colonisation pots were then left in-situ for six weeks, as at least four weeks is 

required to enable macroinvertebrate colonisation (Coleman and Hynes, 1970). However 

upon extraction, significant water loss from the pots led to concerns of sampling bias 

towards macroinvertebrate capable of clinging to substrate within the pots (Scarsbrook and 

Halliday, 2002) (Appendix iii).  

In 2008 the pots were re-designed; a tarpaulin bag with reinforced top and cable was placed 

around the base of each pot before inserting the pot in the excavated hole (Fig. 11). During 

extraction the cable was pulled vertically, driving the wire-reinforced tops to the surface and 

extending the tarpaulin bags. The water-proof bags minimised water loss, therefore reducing 

macroinvertebrate sampling bias. Sediment was placed in bags with 90% ethanol and 

subsequently rinsed and filtered through 0.63 µm mesh (Scarsbrook and Halliday, 2002). Due 

to the quantity of fine sediment, some macroinvertebrates were poorly preserved and thus 

only identified to family level. 

 

 

 

 

 

 

Figure 11: colonisation pot design of 2008, including folded tarpaulin bag with wire-

reinforced rim 
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1.5.2.3 Water Chemistry 

To distinguish between water sources and flow pathways, natural isotopic tracers were used 

(18O and 2H) (Robinson et al., 2009). Although both 18O and 2H were analysed, 18O is 

predominantly presented in the thesis, as this enabled a comparison with several similar 

studies which had used this isotope in their research (Bottomley et al., 1986; Taylor et al., 

2002; Theakstone, 2003). During 2007, from mid-June to August, water samples were 

collected at 14-day intervals at all groundwater-fed streams. These were taken using 2ml 

vials, and retained for isotope analysis. To avoid evaporation during storage the vials were 

completely filled and tightly sealed. In addition a single sample was taken from the glacial 

terminus (12km upstream), and a stream flowing down the alluvial fan, which was proximal 

to the fluvial terrace. 18O and 2H data of 2007 (Appendix Aiv and Av) demonstrated that 

the groundwater-fed streams were likely fed by a combination of at least two isotopically 

distinct water sources. However to determine the relative contributions of each source to 

the streams, with a higher degree of confidence, a more intense study regime was required, 

including additional water sources, and a longer study season to incorporate seasonal 

variation. 

In 2008 the study was repeated, from 30th May to 8th September. During this period every 

rainfall event was sampled. In addition four expeditions were made to sample the glacial 

terminus, during which water from all streams between the terrace and the glacier was also 

collected. Surface runoff from the debris fan/talus cone was sampled every two weeks, due 

to the presence of a large snowpack at the summit. Samples of this snowmelt, directly from 

the terminus of the snowpack, were also collected. Additionally the groundwater-fed 

streams and glacial meltwater of the main Toklat River channel, upstream of the terrace, 
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were also sampled, every two weeks. The two week sampling regimes coincided with the 

four week intervals of the ecological sampling regimes, to enable correlations between 

variables.  

During the 2008 study season, water samples were simultaneously taken in 30ml Nalgene 

polyethene bottles, for analysis of additional natural tracers, such as Chloride (Cl-), to aid 

differentiation between water sources and flow pathways. These samples were filtered 

through 0.45 μl nylon membrane filters and refrigerated prior to analysis using an Anion 

Dionex ICS 2000 (instrumental precision <0.25ppm). In-stream pH was also monitored 

monthly. 

1.5.2.4 Digital Remote Sensing 

In 2007 several Landsat satellite images of Denali National Park and of Wrangel St Elias 

National Park were used to determine the extent of the groundwater-fed stream habitat. 

Due to the low resolution of the data set (30m) groundwater-fed streams could not be 

directly identified. As a result a vegetation proxy was used; the more stable banks and 

nutrient rich flows of streams fed by shallow groundwater (Valett et al., 1994; Dent et al., 

2000) have been observed to contain more dense vegetation (Hayashi and Rosenberry, 

2001). A normalised vegetation indices (NDVI) was therefore applied to the dataset. 

However lakes and rivers derived from non-glacierised catchments were also included in the 

dataset, and as a result of images being taken on different dates, data between images was 

not directly comparable.  

In 2009 reforms were made to the methodology. Datasets were first corrected for between-

image variance, making images directly comparable (Chander et al., 2009). Glacierised 
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catchments were then isolated through the application of a normalised turbidity index, as 

only these areas were relevant to the study. These areas of high turbidity were subsequently 

created as a separate dataset, and the vegetation proxy (NDVI) applied. The location of 

groundwater upwellings within glacierised catchments could then be accurately identified. 

1.6 Outline of thesis 

The thesis consists of four manuscripts, all of which have been, or will be, submitted for 

publication. The format of the chapters has been written accordingly: 

Chapter two, entitled “Water flow dynamics of groundwater-fed streams and their 

ecological significance within a glacierised catchment”, aims to characterise the groundwater 

flow pathways and their physicochemical heterogeneity within the Toklat catchment. The 

primary associations between groundwater flow dynamics and macroinvertebrate 

communities are also explored. 

Chapter three, entitled “Influences of the flow dynamics of groundwater-fed streams upon 

benthic macroinvertebrates, in a glacierised catchment” more fully explores the associations 

between the heterogeneous nature of groundwater flow and macroinvertebrate 

communities. Here the responses of individual taxa to physicochemical variables are 

assessed, and spatial and temporal variability in macroinvertebrate distribution determined. 

Chapter four, “Comparisons of environmental stability between groundwater upwellings on 

a glacial floodplain; influences on hyporheic fauna”, investigates the vertical extent of the 

influence of groundwater flow dynamics. Several variables are combined into a multivariate 

index of environmental stability, which is then used in analysing the potential of the 

hyporheic zone of groundwater-fed streams as a refugia.  
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Chapter five, “Determination of groundwater upwelling sites using remote sensing of 

Landsat data”, scales up the research, to ascertain the spatial extent of groundwater 

upwellings within Alaska. Through digital remote sensing, a GIS-based model is developed, 

isolating areas of groundwater upwelling within glacierised catchments. The model seeks to 

optimise resource use in study site identification, a primary issue behind limited research 

within these areas. 

The final chapter draws together the conclusions from the four manuscripts. 
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2. WATER FLOW DYNAMICS OF GROUNDWATER-FED 

STREAMS AND THEIR ECOLOGICAL SIGNIFICANCE IN A 

GLACIERISED CATCHMENT  

Subsurface flow pathways of groundwater-fed streams were characterized on a fluvial 

terrace of the Toklat River, Alaska, in summer 2008, to establish the influence of local 

physicochemical variability upon macroinvertebrate communities. Streams proximal to the 

valley-side (A sites) and to the main meltwater channel (B sites) were studied. Chloride and 

natural isotopic tracers (18O and 2H) were used to identify water sources and flow 

pathways. Results indicated that flow in B sites was dominated by glacial meltwater seepage. 

Streamflow at sites situated at higher elevations was ephemeral, and commenced with a 

seasonal rise in groundwater-table. In contrast, A sites comprised physicochemistry 

characteristic of seepage from valley-side debris fans, which maintained perennial flow to 

streams at lower elevations. Macroinvertebrate diversity was lower in ephemeral streams, 

likely due to colonization constraints. In June macroinvertebrate abundance was significantly 

positively correlated with the percentage contribution to streamflow from debris-fan seepage 

(p< 0.05) and with fine particulate organic matter concentration (FPOM) (p<0.05); and FPOM 

was correlated with debris fan seepage (p < 0.05). These relationships were not evident in 

July and August, when organic matter availability increased. Results demonstrate that flow 

pathways and organic matter availability significantly influence macroinvertebrate 

communities in these groundwater-fed streams. 
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2.1 Introduction 

Interactions between groundwater and surface-water (GW-SW) influence catchment 

hydrology, solute fluxes and ecological diversity, and are potentially vulnerable to climate 

change (Ward et al., 1999; Brown et al., 2007; Robinson et al., 2009). Despite a growing 

recognition of the importance of these GW-SW interactions, there remains a “relative 

paucity of [hydrological] studies investigating groundwater systems in present-day 

glacierized environments” (Robinson et al., 2009). Groundwater-fed streams are an 

important habitat for macroinvertebrate communities within glacierized catchments (Ward 

et al., 1999; Brown et al., 2003), as streams fed by groundwater may support higher taxa 

abundance than those fed largely by surface snow and ice-melt (Brown et al., 2007). The 

difference in taxa abundance is attributed to characteristically higher water clarity, and 

reduced variability in stream temperature and discharge (Brown et al., 2003) of 

groundwater-fed streams. Climate change may have significant implications for the 

macroinvertebrate communities of groundwater-fed streams (Brown et al., 2007a), as glacial 

recession is predicted, in the long-term, to increase groundwater contributions relative to 

surface water (Milner et al., 2009). However the association between groundwater flow and 

macroinvertebrates may be more dynamic than has yet been established, as differences in 

water sources and groundwater flow pathways create local variations in stream 

physicochemistry (Brunke and Gonser, 1997; Malard et al., 1999; Ward et al., 1999), which 

may influence macroinvertebrate communities.  

Several aspects of groundwater-fed stream physicochemical variability have been attributed 

to variability in the length of flow route within and between groundwater flow pathways. 

Within flow pathways there may be several nested routes of flow, of variable length and 
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thus residence time, which influence the hydrological variability of groundwater (Fig. 2); the 

length reflects the distribution and connectivity of permeable deposits (Ward et al., 2002; 

Robinson et al., 2008).  Early work on Icelandic sandurs (Hjulstrom, 1955) revealed how the 

length of flow route regulated the turbidity of groundwater-fed streams. More recently, flow 

route length has also been linked to the degree of groundwater temperature and flow 

attenuation (Brunke and Gonser, 1997), whereby in glacial or snow-melt catchments, as the 

length of flow route increases, the amplitude of daily variations within subsurface waters 

become increasingly reduced and out of phase with that of the source. 

Locally heterogeneous landscape structure may therefore result in marked physicochemical 

variability within individual flow pathways. For example the series of locally variable 

hydrological facies units, characteristic of valley-bottom fluvio-glacial deposits (Anderson., 

1989; Robinson et al., 2008), may create local differences in subsurface water residence 

times, and associated variations in degrees of flow and temperature attenuation between 

individual streams sourced from alluvial aquifers. Similarly, the hydrogeologic facies of 

sedimentary units along valley-sides are variable and discontinuous (Anderson et al., 2008), 

and seepage through valley-side colluvial deposits (talus cones and debris fans) may follow 

one of two distinct pathways (Clow et al., 2003). First, preferential flow within highly 

permeable layers close to the surface results in rapid, ephemeral, near-surface water flow. 

This is a rapid response pathway, supplied by snow-melt and summer precipitation (Roy and 

Hayashi, 2009). Second, vertical seepage of water into the dense matrix towards the base of 

the colluvial structure results in longer residence times, and perennial groundwater 

baseflow. Preferential flow routes may however develop during saturation where 

disconnected, highly permeable facies become linked (Sidle, 2000). The distribution of flow 
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routes may therefore vary spatially and temporally as precipitation, or snow- and ice-melt 

alter the vertical distribution of water within the flow route network, and potentially 

increase the number of active flow routes within a flow pathway (Sidle, 2000; Anderson et 

al., 2008). 

Seasonal variations in contributions from individual sources and flow pathway may be 

observed. For example, seasonal discharge maxima from upper valley slopes are associated 

with spring peaks in snow-melt. The system then alters from being snow-melt to rainfall 

dominated (Sueker et al., 2000), and the percentage contribution of precipitation to 

groundwater recharge increases. Summer peaks in glacial meltwater discharge reflect the 

timing of ice-melt as the transient snow line rises during the summer (Smith et al., 2001; 

Collins et al., 2002). Flow pathway contributions may also vary spatially; percentage 

contributions to groundwater-fed streams from debris-fan seepage may reduce with 

distance from the valley side (Hjulstrom, 1955). Together with the potentially large local 

scale variations in degree of attenuation of stream flow and temperature regimes, these 

factors result in considerable local spatial and temporal variations in the physicochemistry of 

groundwater-fed streams in glacierised catchments (Sueker et al., 2000; Robinson et al., 

2008). 

The dynamics of groundwater flow display marked trends in isotopic and chemical 

composition over time. Nonreactive tracers such as 18O may therefore be used to 

discriminate between water sources of a glacierised catchment (rainfall, snow-melt and ice-

melt). The 18O values of waters derived directly from rainfall may vary considerably, as the 

isotopic composition of precipitation varies both within and between events (Ladouche et 

al., 2001), depending on the origin of the rainfall water. The 18O values of water comprised 
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predominantly from snow-melt are initially much lighter than those of rainfall-fed systems. 

This is due to the lower temperatures during which snow is formed, resulting in less 

evaporation and therefore lower 18O values (Theakstone, 2003). However, the overall 18O 

composition of snow-melt increases throughout the melt period due to fractionation. 

Isotopically heavier meltwater is generated at the surface of the snowpack, exposed to 

evaporation, and subsequently infiltrates through air spaces within the snowpack via 

diffusion (Moser and Stichler, 1974). Glacier ice-melt does not normally demonstrate 

fractionation (Souchez and Lorrain, 1991), as limited interstitial air space restricts diffusion 

(Moser and Stichler, 1974). However the isotopic composition of glacial meltwaters (GMW) 

reflects several water sources, including seasonal snow-melt from the surface of the glacier, 

glacier ice, melting firn, superimposed ice, regelation ice and subglacial water (Theakstone, 

2003). Seasonal variations in the 18O of GMW therefore typically reflect a combination of 

isotopic fractionation of the snow-melt from the glacier surface, buffered by contributions 

from glacial ice-melt.  

Sources and flow pathways of groundwater-fed streamflow may be identified by comparing 

seasonal variations in isotopic composition of all potential contributory sources, with 

variability in the groundwater-fed streams. Additional unreactive hydrochemical tracers, 

such as chloride (Cl-), may also aid differentiation between mixed water sources. Chloride is 

introduced to the catchment by rainfall and concentrations are subsequently increased by 

evaporation (Hayashi et al., 1998), mineral dissolution (Anderson et al., 2003) or saltwater 

intrusion.  

The ecological significance of groundwater flow dynamics is related to its influence upon in-

stream variability of temperature and discharge, organic matter and nutrient concentrations, 
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and degree of flow permanence. Higher variability of stream flow and temperature result in 

reduced macroinvertebrate community persistence (Townsend et al., 1987) and 

macroinvertebrate diversity (Death and Winterbourn, 1995). Furthermore, organic matter, 

which may be entrained by throughflow and discharged at points of upwelling groundwater 

(Boisser and Fontvielle, 1995), is an important energy source for macroinvertebrates. Taxa 

may aggregate upon patches of organic matter in otherwise resource depleted 

environments (Tiegs et al., 2008). In addition, water sources, groundwater flow pathways 

and local topography will determine the duration of active channel flow (Poff et al., 1997); 

flow permanence has been established as a key driving factor in macroinvertebrate 

community composition (McCabe, 1998). Intermittent and ephemeral streams typically 

support lower diversities, requiring either seasonal re-colonisation, or specialist adaptation 

by macroinvertebrates to facilitate survival during dry periods (Wood et al., 2005).  

In general, ecological research has largely compared macroinvertebrate communities 

between groundwater-fed streams and surface water sources (Friberg et al., 2001; Brown et 

al., 2006). However local variability in the physicochemistry of groundwater-fed streams may 

influence their capacity to support high macroinvertebrate abundance and diversity 

(Turnbull et al., 1995; Soulsby et al., 1997). Accordingly, implications of climate-change may 

be more site specific than previously considered. A quantitative association between 

physicochemical variability in groundwater-fed streams and macroinvertebrates has not, 

however, yet been established. Consequently this study aimed to establish local 

heterogeneity in the physicochemistry of streams fed entirely by groundwater, in the 

floodplain of the Toklat River, Denali National Park, Alaska, and to investigate the influence 

of this variability upon macroinvertebrate communities. The specific objectives were: 
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1. to establish the water sources and flow pathways associated with areas of 

groundwater-fed streams; 

2. to determine local physicochemical variability in groundwater, and identifying key 

driving processes; and 

3. to assess the influence of physicochemical variability of groundwater-fed streams 

upon the macroinvertebrate community. 

2.2 Methodology  

2.2.1 Field site 

A fluvial terrace, elevated ~1m above the active glacial floodplain of the middle fork of the 

Toklat River, in Denali National Park (63o29’19.54”N, 149o57’54.05”W), Alaska (Fig. 12 A) was 

selected for study in summer 2008. The site, located within two miles of an access road, was 

ideal for studying local spatial and temporal variability in groundwater-fed stream 

physicochemistry, given the extensive network of streams fed entirely by groundwater, 

proximity to several water sources (i.e snow-melt, glacial meltwater and rainfall), and locally 

varying topography (ranging over 2.5m in elevation). These groundwater-fed systems on 

terraces are relatively widespread throughout Alaska, but have never before been studied in 

detail. 

The terrace is situated on an eastern section of the glacial floodplain, ~12 km from the glacial 

margin, where the floodplain is ~1300m wide (Fig. 12B). Several debris fans and talus cones, 

with snow-capped summits early in the season, are situated proximal to the terrace. These 

colluvial deposits lie on otherwise vegetation-covered valley sides, with isolated perched 

wetlands, extending along the East and West floodplain margins. The main Toklat River is a 

braided, north flowing tributary of the Yukon River; flow is predominantly derived from ice-
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melt and snow-melt from three small valley glaciers upstream. The upstream catchment is 

~115 km2 with elevations ranging from 1835 m to the south, to 1197 m in the valley-bottom. 

Beneath the glaciers are debris flows, underlain by calcareous and siliceous strata, and along 

the valley-sides are Triassic calcareous sedimentary and submarine basalt, and Paleocene 

volcanic units (Wilson et al., 1998). The valley-bottom consists of glacial, fluvial and colluvial 

deposits.   

The groundwater-fed streams flow from a series of springs, which cross the down-valley 

(northern) margin of the terrace, before discharging into the main Toklat River (Fig. 12C). 

Stream reaches (20m) selected for study demonstrated similar stream morphology (an 

absence of bars, or riffle and pool sequences), and stream beds of small to medium cobbles, 

overlying coarse gravel. Mean monthly precipitation in summer 2008 was ~ 162mm, and in 

winter was ~ 116mm, while mean daily temperatures for the 2008 study period (recorded 5 

km to the north at the Toklat Road Camp) were 11.8°C (day) and 4.7oC (night) (WRCC, 2008).  

2.2.2 Data collection and analysis  

2.2.2.1 Water isotopes and chemistry  

Eight streams were selected for study; 7 streams were situated upon the terrace and fed 

solely by upwelling groundwater (A1, A2, A4, A5, B1, B2 and B3) (Fig.12 C). One stream, 

situated at the foot of the terrace, received combined flow from all groundwater-fed 

streams, and also intermittently from the main Toklat channel (‘mixed’ channel). From 30th 

May to 8th September 2008, water samples were collected at 14-day intervals at all sites and 

from the main glacial Toklat River (GMWriv). Additional sampling of individual water sources 

was undertaken, including ice-melt, snow-melt, debris fan seepage flow, rainfall and GMW 

(sampled from immediately below the terminus of the principal glacier, GMWterm) (Fig. 12B). 
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Water samples were taken using 2ml vials, and retained for isotope analysis. The vials were 

completely filled to ensure minimal headspace and tightly sealed to avoid evaporation 

during storage. Samples were also taken in 30ml Nalgene polyethene bottles, for subsequent 

analysis of Chloride (Cl-) concentration; these samples were filtered through 0.45 μl nylon 

membrane filters and refrigerated prior to analysis using an Anion Dionex ICS 2000 

(instrumental precision <0.25ppm).  

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of D and 18O was carried out using an Isoprime continuous-flow mass-

spectrometer at the University of Birmingham, UK. δD analyses were undertaken using a 

Fig. 12: Study site schematic. A) site location within state of Alaska B) catchment overview including source water 

sampling sites 1 = Ice, 2 = GMWterm 3 = GMWriv 4 = DFSdeep 5 = DFSshallow 6 = snow C) sampling sites in groundwater-

fed streams; chemistry and ecological sampling locations (black), additional piezometer nests (grey)  
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Eurovector Elemental Analyzer preparation line. Prior to analysis, two pulses of reference H2 

were injected to carry out a correction for H3
+. Next, approximately 0.3 μl of sample was  

injected and reduced to hydrogen, at 1050°C over a chromium metal catalyst (Morrison et 

al., 2001). Internal precision for δD was usually within 1 per mil. δ18O analyses were 

undertaken using an equilibration technique. 200 μl samples were pipetted into glass 

exetainers and sealed with a piercable lid and rubber septum. Samples were left for 7 hours 

to equilibrate with a mixed gas (95% He, 5% CO2), allowing the headspace CO2 to assume the 

δ18O composition of the water. The headspace gas was then analysed on the Isoprime mass-

spectrometer. The internal precision for δ18O is typically 0.08 per mil, external precision is 

within 0.12 per mil. 

2.2.2.2 Hydrology 

Piezometer nests were installed at 10 locations as indicated in Fig. 12C (sites A1, A2, A3, A4, 

A5, A6, A7, B1, B2 and B3). Each nest comprised two piezometers (5 cm outer diameter with 

0.4 cm diameter holes drilled over basal 6 cm) installed to depths of 0.5 and 1 m below the 

surface using a piezometer installation system similar to that described by Baxter et al., 

(2003). The relative elevations of individual piezometers was determined by surveying with a 

LEICA Geo electronic distance measurer, and piezometer water levels were monitored twice 

daily from June 17th to Sept. 9th 2008. Spatial variations in water table elevations across the 

field site were interpolated using a 90 m x 260 m grid from individual hydraulic head 

measurements at a depth of 50 cm, by Kriging.  

In-stream water temperatures and levels were logged at 5 of the groundwater-fed sites, and 

in the main glacial meltwater river channel, using in-situ thermistors and pressure 

transducers (Fig. 12C and Appendix B). Stream bed water temperatures were also measured 
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at 20cm depth, at A2 and B1, and at 50cm depth at A5 and B3. Measurements were taken 

continuously, with sensors scanned at 10-s intervals, from which 15-min mean values were 

derived. Gemini TinyTag thermistors were placed at selected sites and left in situ from June 

2008 to June 2009, to determine flow permanence of streams. Perennial channels were 

identified where in-stream temperature, or that of a location directly upstream, constantly 

exceeded OC throughout the year (Appendix C). Ephemeral streams were characterised 

either by in-stream temperatures falling significantly below 0C (during winter), or at  several 

sites, by the observed absence of flow. 

2.2.2.3 Ecology 

Benthic macroinvertebrates were sampled, using a Surber Sampler (330µm mesh), and 

preserved in 90% ethanol. Five replicates were taken at all nine sites, at four week intervals. 

Macroinvertebrates were identified to species wherever practical; Simuliidae, Chironomidae 

and Isotomidae were identified only to family. This level has not been reported to have a 

significant effect upon determination of spatial distributions of invertebrate communities 

(Morris and Brooker, 1980). Mean abundance was calculated at each site, on each sampling 

occasion (expressed as abundance per m2). Substrate collected in the Surber sampler was 

dried at 65oC, and sieved into coarse (>1mm) and fine (<1mm) fractions. This was weighed 

prior to ashing at 540oC for 2 hours, to determine ash free dry mass. Organic matter content 

of both coarse and fine fractions were then calculated, and expressed in milligrams/m2. 

Shannon’s index of macroinvertebrate diversity was calculated (Shannon, 1949). 

 )ln( ii PPH

         

 1. 
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 A Mann-Whitney U test used to determine the difference in diversity between channels fed 

by debris fan flow pathways (DFS) and those fed predominantly by GMWriv seepage. 

Algal matter was also collected at four week intervals from each site, from the upper 

surfaces of four randomly selected stones. The surface was scrubbed with a toothbrush, and 

materials washed into a 24 ml polypropylene container. Stone surface area was recorded. 

Samples were stored in black bin liners and frozen to limit light interactions. Upon analysis, 

samples were freeze dried, and chlorophyll pigments extracted in 90% acetone for 24hours. 

Absorbance was determined at 750, 664, 647 and 630nm wavelengths using a 

spectrophotometer. Concentrations of chlorophyll a, b, c and total chlorophyll were 

calculated using the Sterman (1988) equations, as outlined in Ledger et al (2006).  

2.3 Results 

2.3.1 Isotopic signatures 

The isotopic composition of water samples collected in 2008 are compared with the Toklat 

local meteoric water line (LMWL) and Barrow LMWL (917km North) (IAEA/WMO, 2006) in 

Fig. 13A; LMWLs were derived from rainfall samples of the respective catchments. All 

samples lay close to the Barrow LMWL. Water sources of groundwater-fed streams 

demonstrated distinct 18O signatures (Fig. 13A, Table 1), including precipitation, snow-melt, 

glacial ice, surface flow from the debris fan (DFSsurface), sub-surface flow from the debris fan 

(DFSsubsurface) and GMW from both the terminus of the glacier and the main meltwater 

channel (GMWterm and GMWriv). Samples differed markedly in their range along the Barrow 

LMWL, with isotopic composition of groundwater-fed streams remaining the most 

consistent, and that of debris fan pathways and rainfall altering considerably throughout the 

season. 
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The seasonal average 18O of precipitation (Table 1) was similar to both DFSdeep and 

DFSsurface; the average 18O value of snow-melt, GMWriv and GMWterm were considerably 

lower. Precipitation demonstrated the highest range in isotopic composition across all 

sources throughout the study period (20.26 ‰), with 18O reflecting storm moisture origin. 

The range of DFSsurface 18O was lower than that of precipitation (8.90 ‰), but still relatively 

high compared with GMWterm (2.26 ‰) and GMWriv (3.04 ‰). Unlike precipitation however 

the 18O value of DFSsurface progressively increased throughout the season, irrespective of 

Fig. 13: A) Isotopic composition of source waters and groundwater-fed streams. Toklat local meteoric water line 

(y = 7.05x – 14.9) calculated using rainfall data collected over study season of 2008. Barrow meteoric water line 

(y = 7.12x – 9.13) calculated from GNIP dataset spanning 7 years. Global meteoric water line = 8x + 10  

B) The marked seasonal rise in 
18

O values of DFSsurface ob
18

O values. 
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rainfall origin (Fig. 13B). The average 18O of groundwater-fed streams was greater than that 

of GMWriv, GMWterm and snow-melt, but lower than DFSsurf, DFSdeep and rainfall. Seasonal 

variation of groundwater-fed streams, at 1.5 ‰, was lower than that of all source waters. 

The mixed channel at the base of the terrace had a low average 18O signature, more 

comparable to 18O values of the GMW rivers. 

 

 

 

 

 

 

 

 

Marked variability was observed between A-sites, situated closer to the valley-side, and B-

sites situated further towards GMWriv. Generally A-sites had higher 18O signatures (Fig. 

14C), similar to DFS flow pathways, and streamflow of A-sites responded rapidly to 

precipitation (Fig. 14 A,B), however this response altered over the season. Although stage 

was initially relatively constant, pronounced diurnal flow maxima were observed from July 

16th (A2), and August 16th (A5). At A2 where these variations were most pronounced, the 

response of stage to precipitation became more marked. Variations in isotopic composition 

of the groundwater streams were directly connected to their respective hydrological 

regimes, with the 18O values responding to changes in stream depths. Accordingly, during 

Source 
18O (‰)   SD No. 

samples 
Cl- (mg l-1)  SD No. 

samples 

Rainfall -18.22 5.08 25 1.76 - 1 
DFSsurf -19.45 2.30 11 0.56 0.18 11 
DFS headwaters -18.64 - 1 0.08 - 1 
DFS below snowpack -22.44 0.64 2 0.20 0.07 2 
DFSdeep -18.91 0.18 2 25.8 14.5 2 
Snow-melt -22.99 - 1 0.14 - 1 
Glacial melt (GMWterm) -22.53 0.98 4 0.34 0.2 4 
Toklat main 
stream(GMWriv) 

-22.86 0.95 9 0.04 0.25 9 

Groundwater streams -20.97 0.302 45 2.87 1.13 45 
Mixed -21.38 0.722 8 1.73 1.14 8 

                        Table 1: Seasonal average 
18

O and Cl
-
 signatures of source waters and upwelling sites 
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the more hydrologically variable period at A2 and A5, increases in 18O values were greatest 

at A2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sites B1, B2, and B3 generally had the lowest 18O signatures, more similar to GMWriv (Fig. 

14C). River stage within these sites was generally less responsive to precipitation; 

streamflow increased only following heavy or extended periods of continual rainfall (>4 

days). Notable increases in 18O were observed only during these events; on June 26th, July 

25th and August 11th the 18O of B1 and B3 was higher than at all other sites (Fig. 14C).  

During these events the 18O of groundwater streamflow of all sites increased to some 

degree, irrespective of the isotopic composition of rainfall. B-sites exhibited clear seasonal 

Fig. 14: Variations in flow regime (stream depth) and 
18

O values of groundwater-fed streams with rainfall 
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changes in flow regime, with gradual increases in flow throughout the season (Fig. 14D, E, F). 

B3 demonstrated two seasonal peak stage maxima, firstly in mid-June and secondly in early 

July (Fig. 14D). A similar flow peak was observed at B1 and B2, in early August, under more 

attenuated flow regimes, demonstrated by reduced amplitude of daily stage maxima.  

Seasonal differences in 18O values were observed between ephemeral (B2 and B3) and 

perennial streams (A1-A5 and B1) (Fig. 15). During baseflow conditions early in the season, 


18O was lower at all sites and closer to 18O values of meltwater (snow and glacial). 

Subsequently, progressive seasonal enrichment of isotopic composition occurred within 

almost all perennial channels; A1-A3, A5 and B1. Following the initial increase in 18O values 

within the first month of study, B2 and B3 (ephemeral streams) did not demonstrate further 

progressive isotopic enrichment.  

          

 

 

 

 

 

 

 

 

 

 

Fig. 15: Differing degrees of seasonal enrichment in 
18

O within perennial and ephemeral groundwater-fed streams 
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2.3.2 Hydrological variability  

The flow regimes of the groundwater-fed streams varied throughout the season, and 

increases in interpolated water table elevation were observed across all sites. The greatest 

increases in piezometer water levels were observed during the initial months of study, 

stabilising by early August (Fig. 16B). The extent of the water-table increase was significantly 

positively correlated with site elevation (p < 0.01), reflecting the significant surface gradient 

across the terrace (Fig. 16A), with upstream sites generally situated at higher elevations. 

Fig. 16 A) Elevation of groundwater fed streams; B) seasonal variations in interpolated water table 

elevation across fluvial terrace 
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These streams were ephemeral, with flows commencing later in the season as the water-

table rose to intersect the surface.  

       Fig. 17: Stream stage of all groundwater-fed streams, illustrating different degrees of flow attenuation  

Marked differences in degrees of flow attenuation were determined between sites (Fig. 17). 

Despite similarities in isotopic characteristics between GMWriv and B-sites, only B3 

demonstrated distinct diurnal flow variability. All A-sites demonstrated reduced flow 

variability.  

2.3.3 Cl- content  

The Cl- concentration of DFSdeep was 15 times greater than that of any other water source or 

flow pathway (Table 1). GMWriv, GMWterm, snow meltwater and DFSsurface had the lowest Cl- 

concentrations, whilst the average chloride concentrations of groundwater channels were 

relatively high. The high Cl- concentration of DFSdeep is the most likely source of Cl- to the 

groundwater-fed streams. With a distinct Cl- signature, the proportional contribution of 

DFSdeep to each stream can be estimated using a simple mixing model:   



 

56 

 

  100% 











D

u

S

S
DFSdeep        2.

      

Where DFSdeep% is the percentage contribution of water to the site from DFSdeep waters, Su is 

the concentration of Cl- at the upwelling site, and SD the average Cl- concentration of DFSdeep.  

 By comparing 18O values and Cl- concentrations within individual groundwater-fed streams 

(Fig. 18), two groups of streams were distinguished. Group 1 streams encompassed all A-

sites. These had relatively high Cl- concentrations, which increased throughout the season, 

and corresponded at most sites with seasonal isotopic enrichment; significant correlations 

were identified between 18O values and Cl- concentrations at A2 and A5. Although A4 did 

not demonstrate seasonal isotopic enrichment, this site had similarly high Cl- concentrations 

to other A streams, with comparable temporal variability. Following extended rainfall events 


18O dissociated from Cl-. 

      Fig. 18  Temporal co-variation of Cl
-
 concentrations and 

18
O values within streams 



 

57 

 

Group 2 consisted of sites B2 and B3. Both sites had low Cl- concentrations and no significant 

correlation with 18O (Fig. 18). B1 and the mixed channel alternated between Groups 1 and 2 

during the study season. In early summer low Cl- concentrations were observed at B1, with 

no correlation to 18O values (Group 2), thereafter a seasonal increase in Cl- concentration 

was recorded (Fig. 19i), associated with increases in 18O (group 1). The relationship 

between 18O and Cl- also varied with precipitation. Finally, during periods of peak glacial 

melt (as indicated by seasonal stage maxima in B3; Fig. 17), low Cl- concentrations (Fig. 19ii) 

and 18O values were observed in the mixed channel (Group 2). At all other times, higher Cl- 

and 18O values were observed (Group 1) (Fig 18). 

 

Figure 19 i. Seasonal differences in chloride concentrations between perennial streams (A streams and B1) and 

B streams, and ephemeral streams (B2 and B3); ii. seasonal varability in chloride concentration of mixed 

channel  

2.3.4 Macroinvertebrate communities  

Macroinvertebrate diversity was significantly higher within groundwater-fed streams fed by 

DFS water flow pathways, than in channels fed predominantly by seepage from GMWriv 

(p<0.01). Macroinvertebrate abundance of the mixed channel was markedly lower than that 



 

58 

 

of groundwater-fed streams, except in June when glacial melt was low, and hence 

connection to GMWriv had not been initiated. During this month abundance was relatively 

high and comparable to that of the groundwater-fed streams (Fig. 20A). Following peak 

glacial melt macroinvertebrate abundance declined by 93% and did not significantly recover 

upon subsequent disconnection from GMWriv. Macroinvertebrate diversity of the mixed 

channel however remained analogous to that of groundwater-fed streams until later in the 

season (Fig. 20B), when a reduction in diversity was associated with a higher relative 

dominance of Chironomidae, increasing from 43% in July to 93% in August.  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 20: Monthly variability in macroinvertebrate A) abundance and B) diversity of all study sites, demonstrating 

seasonal trends in macroinvertebrate distributions  
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A significant correlation was determined in June between proportional contribution of 

DFSdeep to groundwater-fed streams and concentration of fine particulate organic matter 

(FPOM) (Fig. 21A). At this time a significant correlation was also determined between 

macroinvertebrate abundance and both DFSdeep% and FPOM (Fig. 21B and 21C). Subsequent 

dissociation of these relationships corresponded with increases in organic matter and 

chlorophyll concentration (Fig. 21D, E, F) observed in July and August.  

 

Fig. 21: Demonstration of interrelationships between A) relative contributions from DFSdeep and FPOM in June, 

B) relative DFSdeep contributions and macroinvertebrate abundance in June C) association between 

macroinvertebrate abundance and FPOM  D-F) seasonal variability in organic resources 
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2.4 Discussion  

2.4.1 Water sources and flow pathways  

As the Barrow LMWL, created from the Global Networks of Isotopes in Precipitation (GNIP) 

dataset, included winter precipitation, it provided a more complete representation of the 

annual meteoric water input than rainfall data collected from the study site in summer. The 

proximity of samples to the LMWL indicates evaporation to be an unlikely cause of 18O 

differences between sources and groundwater-fed streams (Fairchild et al., 1999). Results 

suggest that the groundwater-fed streams were fed both by seepage from the valley-side 

debris fans (higher 18O values), and from GMWriv (lower 18O values). Distinct isotopic 

signatures enabled identification of water sources and flow pathways contributing to 

groundwater-fed stream flow (Gibson et al., 2005); as the mean 18O value of groundwater-

fed streams was intermediate between those of GMWriv and the DFS flow pathways, it was 

concluded that both were present within stream flow. Moreover results indicated that 

streams may receive variable contributions to flow from these pathways, as the 18O of 

upwelling channels differed between sites and over time. 

Three flow pathways were associated with the valley-side; a surface pathway (DFSsurface), and 

two subsurface pathways. Of the subsurface pathways, the first was situated at depth within 

the valley-side profile (Fig. 22), where waters likely had a long residence time (DFSdeep) due 

to the less permeable, fine matrix of the lower layers of the debris fan (Clow et al., 2003). 

This pathway acted as a perennial baseflow and principal source of Cl- to the groundwater-

fed streams. A possible explanation for the higher Cl- concentrations is evaporation of water 

in the active root zone, during infiltration into the subsurface (Peters and Ratcliffe, 1998). 

However as samples did not deviate from the LMWL, evaporation is unlikely (Anderson et 
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al., 2008a). A more likely explanation is localised mineral dissolution; increased contact time 

with rock facies in this flow pathway may enhance mineral dissolution of evaporites, and the 

Cl- concentration of this groundwater may be increased to levels much greater than in initial 

atmospheric inputs (Anderson et al., 2003). Halites and anhydrites are specified within the 

site description (Wilson et al., 1998), but could be found within the late Triassic calcareous 

sedimentary geological facies units of the valley-sides. This would explain the higher Cl- 

concentrations observed in DFSdeep, with minimal alteration in 18O values. 

 

Fig. 22: Schematic of groundwater flow pathways contributing to stream flow on a fluvial terrace of the Toklat 

River catchment 
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The presence of a second subsurface flow pathway within the valley side was indicated by 

simultaneous increases in stage and 18O values, and reductions in Cl- concentrations 

detected within groundwater-fed streams, in response to precipitation events. This 

demonstrates contributions from a rapid response pathway, potentially through the highly 

permeable near-surface sediments of the debris fan (de Jong et al., 2004; Roy and Hayashi, 

2009) (Fig. 22). The 18O values of precipitation were however buffered prior to reaching 

sites of groundwater upwelling; irrespective of the characteristically variable 18O values of 

rainfall, in-stream 18O values persistently increased following precipitation. This may occur 

via the mixing of rainwater with antecedent soil moisture upon valley sides, which increases 


18O and reduces variation (Rodgers, 2005). In conjunction with the similarity between mean 

precipitation 18O values and DFS pathways, this buffering mechanism indicates the most 

likely pathway of the heavier in-stream 18O values, following rainfall, to be through the 

valley side. Reduced in-stream Cl- concentrations relative to 18O values, also observed 

following rainfall, may reflect the increased relative contribution of DFSshallow in 

groundwater-fed streams, with the rate of water flow through this pathway sufficient to 

minimise mineral dissolution (Swoboda-Colberg and Drever, 1993). Alternatively halite 

deposits may be highly localised, and flow through DFSshallow may bypass the mineral 

completely. The reduction in Cl- concentration suggests a time lag in the relative 

contributions, and hence in residence times, of the two subsurface DFS pathways. 

The seasonal enrichment of 18O observed within all DFS waters may be attributed to 

isotopic fractionation of snow-melt water (Moser and Stichler, 1974), whereby water 

released from snowpacks is progressively enriched by between 3-5 ‰, until all meltwater is 

utilised (Taylor et al., 2002). Seasonal isotopic enrichment of DFSsurface is, however, 9 ‰, 
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suggesting additional processes may be responsible. As the average 18O value of rainfall 

was much higher than that of snow-melt, the isotopic enrichment may additionally reflect 

seasonal reductions in snow-melt supply, and the subsequent transition from a snow-melt to 

a rainfall dominated catchment (Sueker et al., 2000). 

The final flow pathway comprises subsurface connections between GMWriv and 

groundwater-fed streams (Fig. 22); these waters have a lower 18O value and a low Cl- 

concentration.  This pathway is analogous to lateral subsurface seepage described in the 

literature (Ward et al., 2001); however due to the strong topographic gradient in this 

catchment, the predominant glacial subsurface flow pathway is likely to be through seepage 

along the valley axis, creating an alluvial aquifer (e.g. Malard et al., 2002). Mixing of the 

three subsurface pathways results in the intermediate 18O values and Cl- concentrations 

observed in the groundwater-fed streams. 

2.4.2 Local scale variability in physicochemical composition of groundwater-fed streams 

Our results indicated that, as Malard et al (1999) found of the Val Roseg in the Swiss Alps, 

the three primary sources (snow, ice and rainfall) contributing to groundwater flow varied in 

both their relative contribution and flow pathway over space and time. This contributes to 

marked local spatial and temporal variability in the physicochemistry of groundwater-fed 

streams.  

2.4.2.1 Spatial variability  

Seasonal and spatial trends in the physicochemistry of the groundwater-fed streams can be 

attributed to differences in the proportional contributions from DFS flow pathways and 

GMWriv seepage. The proximity of the A streams to the valley-side, the lack of mid-summer 
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flow maxima, and the perennial nature of flow indicates that these streams received a 

significant contribution to flow via seepage from the DFS pathways. The relatively high 18O 

values and seasonal isotopic enrichment observed within A streams, are also characteristic 

of DFS waters. This conclusion is further supported by high Cl- concentrations, indicative of 

DFSdeep contributions, in addition to seasonal increases in Cl- concentration, which were 

positively associated with the seasonal enrichment of 18O. 

 Cl- enrichment reflects several interacting processes. Cl- concentrations within valley side 

flow pathways, and hence within A streams, were low at the start of the study season, 

following preferential leaching of Cl- from snowpacks during peak snow-melt (Helliwell et al., 

1998). Small groundwater reservoirs cannot buffer against high volumes of water (Bottomley 

et al., 1986), therefore low Cl- concentrations were released from DFSdeep into streams 

during snowmelt, as large quantities of meltwater, low in Cl- concentration, were rapidly 

flushed through this pathway. Following peak snow-melt, progressively reduced snow 

meltwater contributions result in an increased dominance of rainfall (Sueker et al., 2000), 

which had a higher Cl- concentration. Permeating in smaller quantities through the valley-

side, rainfall water, further enriched in Cl- through mineral dissolution, was released from 

DFSdeep into the groundwater-fed streams. In summary, the seasonal increase in Cl- 

concentrations of A streams therefore likely resulted from gradual increases in percentage 

contributions of rainfall (Sueker et al., 2000). As rainfall dominance produced characteristic 

seasonal variations in 18O and in Cl- within DFS flow pathways, the positive associations 

observed in A streams between 18O and Cl- further indicated the dominance of this flow 

pathway. Dissociation of the relationship following rainfall reflects inputs from the DFSshallow 

temporary flow pathway. 
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The closer proximity of B streams to GMWriv, seasonal-maxima, and generally lower 18O 

values are suggestive of a higher contribution from GMWriv seepage. Ephemeral flow and 

lack of seasonal 18O enrichment at B2 and B3 further supports this. Initial low 18O 

signatures likely reflect high volumes of snow-melt released into the glacial meltwater 

channel from the glacier surface early in the season (Collins, 1979). The ensuing lack of 18O 

enrichment potentially reflects increases in relative contributions of ice meltwater to flow 

which undergoes significantly less fractionation than snow (Souchez and Lorrain, 1991; 

Moser and Stichler, 1974). The progressive rise in transient snowline throughout the 

summer and resultant increase in ice-melt (Collins, 1989) would greatly buffer fractionation 

effects of the snow-melt contributions from the glacier surface. At these sites, following 

peak snow-melt, there was no increase in Cl- concentrations which remained low throughout 

the study period, suggesting limited or no connection with DFSdeep. As a result there was no 

association between 18O values and Cl- concentrations, indicating limited contributions 

from sources transforming between snow-melt and rain-fed dominated systems (DFS 

sources). 

Site B1, although demonstrating perennial flow and seasonal isotopic enrichment, similar to 

A streams, was more similar to other B sites in its proximity to GMWriv, and presence of mid-

summer flow maxima. This indicates a more mixed inflow of groundwater flow pathways to 

this site, with a strong input from GMWriv seepage, and a DFSdeep baseflow component. This 

mixture of flow pathways is further substantiated by Cl- analysis. The high Cl- concentrations 

and seasonal enrichment observed are indicative of DFSdeep baseflow. In addition dilution of 

Cl- following precipitation events of greater than four days suggests temporary connections 

were formed between DFSshallow and B1 during high rainfall events. Temporal initiation of 
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preferential flow pathways during high discharge events has been observed in several 

studies (Tsuboyama et al., 1994; Uchida et al., 2005). Differences observed between B1 and 

other B sites, despite similar proximity to GMWriv, and thus a significant flow contribution 

from GMWriv seepage, are due to the lower elevation of B1, being sufficiently close to the 

water table to maintain a perennial valley-side seepage baseflow component. 

In the mixed channel, reductions in 18O values during periods of connectivity to GMWriv 

(observed initially by marked increases in stream turbidity) can be attributed to the addition 

of glacial meltwater (low 18O values) to the previously predominantly groundwater-fed 

stream. As reductions in 18O of the mixed channel, and hence periods of connectivity to 

GMWriv, coincided with peak glacial melt throughout mid June to late July (determined from 

the B3 flow regime), this suggests that connectivity to the main Toklat channel occurred 

during times of peak meltwater flow. Increased meltwater discharge results in significant 

alterations to the surface channels of the main glacial river (Warburton, 1994); glacial 

meltwater may overtop the channel sides, and flow into the mixed channel, which is situated 

upon a slightly elevated section of the floodplain immediately below the terrace. The 

reductions in Cl- also observed during this time were likely due to the low Cl- content of 

GMWriv. Associations between 18O and Cl- observed during groundwater dominance of 

mixed channel flow, is likely attributed to contributions from DFSdeep.  

2.4.2.2 Temporal variability  

In addition to seasonal variations in Cl- and 18O observed in A streams, reflecting reductions 

in snow-melt from the valley-side, short-term and seasonal variations in subsurface flow 

pathways were observed in both A and B streams, resulting from water table increases, 

enhancing connectivity between previously isolated preferential flow pathways (Anderson, 
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2008; Sidle et al., 2000). Although B sites were predominantly fed by GMWriv seepage, 

temporary rises in water table following prolonged precipitation events created pathways 

between the B sites and isotopically enriched and rapidly responsive DFSshallow. This was 

observed by step increases in stage, and concurrent uncharacteristically high 18O values. A 

sites situated closer to the valley sides, demonstrated enhanced connectivity following less 

extensive precipitation events.  

 The observed seasonal increase in water table reflects progression of the melt season 

(Robinson et al., 2008), with increased GMWriv flow resulting in greater subsurface 

infiltration of water. As the water table continued to rise until it intersected the surface, 

water table increases were particularly marked at higher elevations. Accordingly streams 

began to flow at progressively higher points throughout the summer. Seasonal increases in 

streamflow observed at B sites might therefore be attributed to water table rises produced 

by peak mid-summer meltwater flows. Sites at the lowest points of the terrace sustained 

perennial flow, as they lay at a sufficiently low elevation to maintain surface flow supplied by 

DFSdeep, despite winter reductions in water table height.  

Seasonal increases in the diurnal variability of streamflow observed at A sites, concurrent 

with increases in streamflow at B sites, may indicate an influx of GMWriv seepage, following 

the rise in the water table. A similar process occurred at A4 and A5; with differences in 

emergence times of GMWriv seepage reflecting variations in flow attenuation and sediment 

permeability (Ward et al., 2002) i.e. water followed different routes of flow, with different 

residence times, within the flow pathway.  

The results suggest that each groundwater-fed stream is characterised by a balance of 

inflows derived from three subsurface flow pathways: 1) ephemeral subsurface seepage 
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from the main glacial meltwater channel (GMWriv seepage); 2) perennial flow through the 

base of an adjacent debris-fan on the valley-side (DFSdeep); and, 3) rapid-response near-

surface flow through the debris-fan (DFSshallow).  

The relative contribution of each pathway to individual groundwater-fed streams varies 

spatially and temporally, and may be significant given predicted long-term reductions in 

meltwater supplies, resulting from climate change-associated glacial recession (Milner et al., 

2009). Results indicate recession may differentially influence each groundwater-fed stream. 

B2 and B3, fed almost solely by glacial meltwater, may cease to flow, whereas streams 

derived from DFSdeep may maintain active channel flow, increasing their percentage content 

of rainfall recharge. Given the local variations in physicochemistry and climate change 

implications between each groundwater-fed stream, ‘groundwater’ in this catchment cannot 

be regarded as homogeneous. 

2.4.3 Influence of spatial variations in groundwater hydrology on macroinvertebrate 

communities 

Groundwater upwellings are recognised as hotspots of macroinvertebrate biodiversity 

(Brown et al., 2007), due to increased thermal and discharge stability, and water clarity 

(Brown et al., 2003). The markedly higher macroinvertebrate abundance and, later in the 

study season, macroinvertebrate diversity, found within groundwater-fed streams relative to 

the mixed channel supports this widely held observation. The uncharacteristically high 

macroinvertebrate abundance and diversity found within the mixed channel during June 

might be attributed to the absence of glacial influence and dominance of groundwaters prior 

to and during this period, with associated greater channel stability and water clarity 

observed at this time. Following the influx of glacial waters (initially observed by a reduction 
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in water clarity), the reduction in abundance, with maintenance of relatively high diversity, 

might be associated with the sampling of macroinvertebrates so shortly after meltwater 

inundation; general reduction of all taxa by high discharge may have occurred (Resh et al., 

1988; Cardinale et al., 2006). Subsequent reductions in biodiversity may be attributed to 

ensuing recolonisation and dominance by specially adapted multivoltine Chironomidae 

(Williams, 1996). Macroinvertebrate abundance did not recover once glacial waters receded, 

potentially due to longer term reduction of habitat suitability, e.g. deposition of glacial fines 

and reduction in pore space (Angradi, 1999) or removal of refugia. Alternatively 

recolonisation of the mixed channel following restoration of groundwater-flow dominance 

may require a longer period of time (Scrimgeour et al., 1988). 

The significant positive relationships observed in June between macroinvertebrate 

abundance, DFSdeep% and FPOM suggest that during this month DFSdeep was a principal 

source of FPOM, and macroinvertebrate community distribution reflected the availability of 

this resource. Transport of particulate matter within subsurface environments is widely 

recognised (McDowell-Boyer et al., 1986) and valley-side through-flow (the source of DFS 

flow) may therefore entrain organic matter, which is discharged at points of groundwater 

upwelling (Boisser and Fontvielle, 1995), and thus the A sites and B1, which received greater 

relative contributions from DFSdeep, had higher organic matter concentrations. Organic 

matter is an important energy source (Polis et al., 1997; Buffam et al., 2001), and during 

periods of low resource availability, macroinvertebrates are therefore likely to aggregate 

upon ‘resource islands’ (Webster and Waide, 1982) of patches of high organic matter 

concentration (Tiegs et al., 2008), such as those provided by upwelling DFSdeep.  
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The absence of a significant relationship between DFSdeep% with organic matter and 

macroinvertebrate abundance in July and August could reflect increased availability of 

alternative organic matter resources, resulting from establishment of streamside vegetation, 

leaf litter fall, and reductions in streambed shading and associated enhanced periphyton 

production (Rosemond et al., 2000). As food resources were no longer constrained to 

isolated patches at points of DFSdeep discharge, the relationship between macroinvertebrate 

distribution and groundwater flow pathway weakened.  

Despite seasonal variability in relationships between macroinvertebrate abundance and 

groundwater flow pathways, macroinvertebrate diversity within DFSdeep -fed streams was 

still overall significantly higher than within streams supplied by higher proportions of GMWriv 

throughout the study period. Lower macroinvertebrate diversity observed in all streams 

during June is attributed to lower organic matter availability; diversity seasonally increases in 

perennial streams with organic matter resources, as many taxa are phenologically adapted 

to hatch in months when resource availability is greatest (Cummins et al., 1989). Flow 

permanence (Smith et al., 2003) and associated re-colonisation requirements of the glacially-

fed ephemeral streams restrict increases in diversity, despite observed increases in organic 

matter availability. Here, as colonisation is limited to specialists adapted to the habitat, e.g. 

Chironomidae, spatial distribution of many taxa cannot reflect habitat preferences (Fonseca 

and Hart, 2001). Thus although resources increase within ephemeral streams throughout the 

season, aggregation of macroinvertebrates at sites of greater resources results 

predominantly in higher numbers of only a few specially adapted macroinvertebrates, 

potentially through the process of active drift (Oliver et al., 1971). For example, at site B3 the 
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relative abundance of Chironomidae rose from 83 to 94% between July and August; 

accordingly macroinvertebrate diversity decreased. 

During periods of low organic matter availability, the ecological capacity of the groundwater-

fed streams is governed by water sources and pathways. Although relationships between 

macroinvertebrate abundance and flow pathways are weakened following the increase in 

alternative sources of organic matter, significant differences in diversity subsequently 

observed between perennial streams (derived from DFSdeep seepage) and ephemeral streams 

(derived from GMWriv seepage) demonstrates the sustained influence of groundwater flow 

pathways upon the macroinvertebrate community.  

The implications of climate change upon macroinvertebrate communities within 

groundwater-fed streams are highly localised. Given the potential for future cessation of 

GMW supplies (Milner et al., 2009) macroinvertebrate communities within streams fed 

solely by glacial meltwater seepage demonstrate a high potential vulnerability to glacial 

recession, especially when considering their relatively low macroinvertebrate diversity. 

Perennial streams fed by groundwaters from snowmelt and rainfall could be more resilient 

to climate change; the diversity of macroinvertebrates within these streams may infact 

increase, as the reductions in glacial meltwater results in a relative increase in contributions 

from perennial sources (Brown et al., 2007a). However as additional characteristics of 

groundwater (e.g. organic matter content) vary to such a marked extent over a relatively 

small scale, influences of glacial recession will be complex. Groundwater should therefore be 

regarded as having a dynamic influence upon macroinvertebrate communities. 
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2.5 Conclusion 

Marked local spatial and temporal heterogeneity may occur in the physicochemical 

characteristics of groundwater-fed streams in glacierised catchments, reflecting variability in 

the proportional contribution of waters derived from distinct sources and flow pathways. On 

a fluvial terrace of the Toklat River, spatial variations in flow pathway contributions reflected 

both proximity to respective flow pathways and local topography. Contributions from flow 

pathways to stream flow varied both on a seasonal and rainfall-event scale. Resultant 

physicochemical differences between streams significantly influenced macroinvertebrate 

communities, but seasonal increases in organic matter availability reduced the influence of 

these variables upon macroinvertebrate abundance. In resource depleted environments, 

groundwater flow, entraining organic matter, may have a significant influence upon the 

maximum macroinvertebrate abundance which can be supported. 

Seasonally reduced macroinvertebrate diversity was observed in groundwater-fed streams 

sourced from glacial meltwater of the main Toklat River (GMWriv) compared with those 

sustained by valley-side baseflow. This demonstrated a potential differential vulnerability of 

macroinvertebrates to climate change between groundwater-fed streams. Understanding of 

groundwater flow in glacierized systems is essential in establishing the influence of 

groundwater upon macroinvertebrate communities, and the future implications of climate 

change.  
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3. THE INFLUENCE OF GROUNDWATER FLOW DYNAMICS 

UPON BENTHIC MACROINVERTEBRATES, IN A GLACIERISED 

CATCHMENT 

The influence of variability in flow pathways upon macroinvertebrates was studied in 7 

groundwater-fed streams from May to September, 2008, within the Toklat River floodplain, 

Alaska. Higher macroinvertebrate diversity was supported by streams which derived a 

greater proportion of groundwater flow from perennial seepage, through a dense matrix, 

deep within a debris fan (DFSdeep). Streams fed almost solely by glacial meltwater seepage 

(GMWriv seepage) supported lower macroinvertebrate diversity. Seasonal trends in 

macroinvertebrate distribution were determined within both ephemeral and perennial 

streams, through the use of a detrended correspondence analysis. Significant relationships 

were found in June between source water composition (DFSdeep%), fine particulate organic 

matter (FPOM) and macroinvertebrate abundance, indicating that during this month 

macroinvertebrates aggregated upon FPOM, which was predominantly supplied by DFSdeep. 

Subsequently, increases in alternative sources of organic matter reduced the influence of 

DFSdeep-derived FPOM upon benthic macroinvertebrates, and weakened the relationship 

between macroinvertebrate abundance and DFSdeep%. Resource tracking was indicated by 

the continued association of macroinvertebrate abundance with organic matter throughout 

the study period, although this varied between taxa, depending upon specific traits. The 

results indicate that the spatially and temporally dynamic groundwater flow pathways had 

an equally dynamic influence upon macroinvertebrate communities. 
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3.1 Introduction 

Groundwater inflow may strongly influence the macroinvertebrate community structure of 

surface streams, (Brown et al., 2003), by increasing stream temperature, flow stability and 

water clarity. Groundwater flow is, however, highly dynamic, and the interaction of various 

groundwater sources and flow pathways can create marked local variations in 

physicochemical characteristics of streams (Ward et al., 1999; Füreder et al., 2001). This 

local variability in physical habitat (flow permanence and attenuation) and in resource 

availability (nutrient and organic matter concentrations) may influence macroinvertebrate 

communities (Turnbull et al., 1995; Soulsby et al., 1997). Groundwater flow may therefore 

be a more complex ecological driver of macroinvertebrate communities than previously 

established.  

Variability in groundwater flow pathways is linked to the discontinuous, heterogeneous 

nature of the local subterranean structure (Anderson, 1989). As groundwater flow pathways 

in arctic and alpine streams are formed between permeable deposits within the valley 

bottom, valley side and bedrock aquifers (Robinson, 2008), local discontinuity in the 

structure of these deposits may create local variations in the routes of groundwater flow 

(Anderson, 1989). These various flow routes, nested within a single flow pathway, are 

characterised by different degrees of diurnal variability in flow and temperature regimes 

(Robinson et al., 2008), reflecting local differences in groundwater residence time (Fig. 2). 

Reduced variability in water temperature and flow typically result in greater 

macroinvertebrate abundance (Brown et al., 2007). Additionally, groundwater source, flow 

pathways and local topography influence the length of active channel flow (flow 

permanence), which is a key variable in macroinvertebrate community composition 
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(McCabe, 1998). Streams with low flow permanence (ephemeral streams) typically support 

lower diversity than streams sustaining active flow throughout the year (perennial streams) 

(Wood et al., 2005), reflecting the need for seasonal re-colonisation, or specialist adaptation 

within ephemeral streams. 

Groundwater flow pathways may also influence the availability of food resources, such as 

dissolved and particulate organic matter (DOM and POM), and nutrient concentrations of 

streams. Groundwater can potentially entrain organic matter by throughflow (Boissier and 

Fontvieille, 1995); flow pathways through deeper soils may therefore discharge greater 

concentrations of DOM and POM to river channels (Polis et al., 1997; Buffam et al., 2001). 

This influence may vary seasonally, as groundwater-derived organic matter is potentially 

ecologically significant only during periods of low alternative resource availability. In 

temperate streams autumnal leaf fall is an alternative source of allochthonous matter (Hill et 

al., 2001), and increases light penetration to the stream bed, enhancing periphyton growth 

(autochthonous materials) (Rosemond et al., 2000).  

Organic matter is an important energy source for benthic communities of arctic and alpine 

streams where resources are sparse (Cowan and Oswood, 1984; Ward, 1994; McKnight and 

Tate, 1997; Tiegs et al., 2008). Positive associations between macroinvertebrates and 

organic matter have been established (Grimm, 1994 in Rowe and Richardson, 2001), and 

attributed to aggregation of macroinvertebrates upon resources (Tiegs et al., 2008; Dobson 

and Hildrew, 1992; Richardson, 1991). Aggregation is most marked in resource depleted 

environments (Tiegs et al., 2008) where accumulations of resources serve as habitat patches 

(Palmer, 2000; Eggert and Wallace, 2003) or ‘resource islands’ (Webster and Waide, 1982; 

Benfield et al., 2001). The ability of taxa to locate resource patches, and to redistribute in 
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accordance with temporal variations in resource availability, is termed ‘resource tracking’ 

(Rowe and Richardson, 2001; Hart and Robinson, 1990). Although several mechanisms of 

resource tracking have been identified, active and passive drift are widely accepted as the 

dominant processes (Rowe and Richardson 2001; Richardson, 1991; Kohler, 1985).  

Active drift occurs as macroinvertebrates emigrate from sites of low resource availability, by 

entering the water column (Hansen and Cross, 2007), moving upstream along the stream 

bed (Townsend and Hildrew, 1976; Williams and Williams, 1993; Fengolio et al., 2002) or 

entering the benthic zone from the hyporheic zone (Williams, 1977). Conversely, passive 

drift occurs as large numbers of macroinvertebrates are ‘accidentally’ dislodged into the 

water column, predominantly during spates (Hart and Fineli, 1999). Associations between 

macroinvertebrates and organic matter may also be non-linear, due to the simultaneous 

influences of multiple variables upon communities. The facultative feeding nature of many 

macroinvertebrates may complicate the resource tracking relationship as some taxa can 

alter their diet according to resource availability or developmental stage (Mihuc and 

Minshall, 1995; Moore, 1977).  

The influence of local scale variations in groundwater dynamics may vary depending upon 

temporal shifts in physicochemical variables, and taxa-specific traits. Therefore this study 

aims to assess not only the relationship between groundwater flow pathways and 

macroinvertebrate distribution, but also to incorporate additional physicochemical variables 

in examining the temporal and spatial dynamics between the physical environment and 

macroinvertebrate communities, in streams fed solely by upwelling groundwater in the 

floodplain of the Toklat River, Denali National Park, Alaska with the objectives of: 
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1) exploring the local spatial and temporal variability in physicochemical variables 

within groundwater-fed streams; 

2) determining associations between benthic macroinvertebrate community 

distribution and local physicochemical variables; and 

3) establishing the relationships between individual taxa and spatial and temporal 

groundwater dynamics. 

3.2 Methodology 

3.2.1 Field site 

 In summer, 2008, a fluvial terrace was selected for study; it is elevated ~1m above the 

current active glacial floodplain of the Toklat River, Denali National Park, Alaska 

(63o29’19.54”N, 149o57’54.05”W; Fig. 23A). Mean monthly precipitation in summer 2008 

was ~ 162mm, and in winter was ~ 116mm, while mean daily temperatures for the 2008 

study period (recorded 5 km to the north at the Toklat Road Camp) were 11.8°C (day) and 

4.7oC (night) (WRCC, 2008). The site was ideal for studying the macroinvertebrate 

communities of groundwater-fed streams, due to the extensive network of streams, fed 

entirely by groundwater, flowing across the terrace, and the proximity of the site to an 

access road (<2 miles).  

The Toklat River is a braided, north flowing tributary of the Yukon River, and flow is 

predominantly derived from ice-melt and snow-melt of three small valley glaciers upstream. 

The terrace is ~12km from the glacial margin, where the floodplain is ~1300m wide (Fig. 

23B). Vegetation-covered valley sides, supporting isolated perched wetlands, extend along 

the east and west margins of the floodplain, along which additionally lie several debris fans 
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and talus cones. The catchment upstream is ~115km2. Beneath the glaciers lie debris flows 

of Silurian and Devonian calcareous strata, whilst along the valley sides are Triassic 

calcareous sedimentary and submarine basalt, and Paleocene volcanic geologic units (Wilson 

et al. 1998). The valley bottom consists of unconsolidated clasts of glacial, fluvial and 

colluvial origin. 

The groundwater-fed streams flow from a series of springs, which cross the down-valley 

(northern) margin of the terrace, before discharging into the main Toklat River (Fig. 12C). 

Stream reaches (20m) selected for study demonstrated similar stream morphology (an 

absence of bars, or riffle and pool sequences), and stream beds of small to medium cobbles, 

overlying coarse gravel. These streams demonstrate variable hydrological characteristics 

(Table 2).  

 

Table 2: Site characteristics (determined in Chapter 2) 

3.2.2 Data collection 

Seven groundwater-fed streams were studied from May 30th to September 9th 2008. Nested 

piezometers were inserted to depths of 50cm and 100cm at each site (Fig.23C); stream 

depth and hydraulic head in each tube was monitored twice daily, and pH and electrical 

conductivity (EC) were monitored monthly. Thermistors and pressure transducers were 

inserted at five of the upwelling points (A2, A5, B1, B2 and B3), at the surface, and at depths 

Site Flow pathway Flow Permanence 
Average Discharge 
(cumecs) 

Average Temperature 
(oC) 

A4 Debris fan seepage  Perennial 0.016 --- 
A5 Debris fan seepage Perennial 0.004 4.03 
A2 Debris fan seepage Perennial 0.006 4.45 
A1 Debris fan seepage Perennial 0.012 --- 
B3 Glacial seepage Ephemeral 0.093 5.34 
B1 Glacial and debris fan Perennial 0.051 3.50 
B2 Glacial seepage Ephemeral 0.041 3.69 
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of 20cm (A2 and B1) and 50cm (B3), recording average readings of stream stage and 

temperature at 15 minute intervals (Appendix B). Gemini Tinytag Plus thermistors were 

placed at selected sites and left in situ from June 2008 to June 2009, to determine the length 

of active channel flow. Perennial streams were identified where in-stream temperature, or 

that of a location directly upstream, constantly exceeded 0oC throughout the year (Appendix 

C). Ephemeral streams were characterised either by in-stream temperatures falling 

significantly below 0C (during winter), or at several sites, by the observed absence of flow.  

 

 

 

 

 

 

 

 

 

 

Channel cross sections were measured at three week intervals, whereby stream channel 

dimensions, river depth and flow velocity were measured (at 1/6 depth). Flow duration 

curves, and hence stream discharge data, were calculated. At each site, substrate size was 

Fig. 23: Study site schematic. A) catchment overview B) sampling sites on groundwater-fed streams C) site 

location within state of Alaska 
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determined by measuring the b axis of 100 randomly selected stones (Burgherr et al., 2002) 

and D50 calculated. The bottom component of the Pfankuch Stability Index (PSI) was 

determined, incorporating scores for rock angularity, brightness, particle consolidation and 

size distribution, scouring and deposition, and abundance of aquatic vegetation (Pfankuch, 

1975).  

Periphyton was collected monthly at each site, from the upper surfaces of four randomly 

selected stones. The surface was scrubbed with a toothbrush, and biofilm washed into a 

24ml polypropylene container. Stone surface area (cm2) was calculated by tracing the outline 

of the rock onto an acetate sheet, and weighing from the mass (g) of the tracing (Ledger and 

Hildrew, 1998). Samples were stored in the dark, and frozen. During analysis 10ml of each 

sample was freeze dried, and Chlorophyll pigments extracted in 90% acetone for 24 hours. 

Absorbance was determined using a spectrophotometer, at 750, 664, 647 and 630nm. 

Concentrations of chlorophyll a, b, c and total chlorophyll were calculated using the Sterman 

equations (1988), outlined in Ledger et al (2006).  

Five replicate benthic macroinvertebrate samples were collected monthly at each site, using 

a Surber sampler (mesh 330µm), and preserved in 90% ethanol. Macroinvertebrates were 

identified to species wherever practical; Simuliidae, Chironomidae and Isotomidae were 

identified only to family. Abundance was expressed per m2. Gut analysis of a predator 

Oreogeton spp (family: Empididae) was carried out, to determine its dominant prey. Organic 

material collected in the Surber sampler, having been separated from the 

macroinvertebrates, was dried at 65oC, and sieved into coarse (>1mm) and fine (<1mm) 

fractions, prior to ashing in a furnace at 540oC for 2 hours.  Ash free dry mass was 
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determined by re-weighing, and both fine particulate organic matter (FPOM) and coarse 

particulate organic matter (CPOM) were calculated (mg/m2). 

Water samples were collected at 14-day intervals at all sites. Additional water sampling was 

undertaken at higher points in the catchment (Fig. 23B) to investigate specific water sources 

(e.g. ice-melt, snow-melt, debris fan seepage flow and rainfall). Samples were collected from 

the centre of the streams, using pre-rinsed Nalgene poly-ethene bottles, filtered through 

0.45 μm nylon membrane filters to remove organic matter and suspended sediment, and 

refrigerated. Samples were then analysed for Cl- using an Anion Dionex ICS 2000; 

instrumental precision was 0.25 ppm. 

Precise topographical measurements of the study area, including individual sites and river 

courses, were taken using a LEICA Geo electronic distance measurer (EDM). Relative site 

elevations were then calculated and interpolated on a 90m x 260m grid, using the Kriging 

method.  

3.2.3 Data analysis 

Direction of subsurface water movement was determined by calculating the hydraulic 

gradient (HG) of each piezometer nest. HG was calculated as the difference between the 

stream water level and the water level in the 50cm piezometers divided by the vertical 

distance. A positive gradient indicated that the direction of water movement was vertically 

upward. Stream rating equations were also derived for each cross section, enabling stream 

discharge to be estimated (continuously) for each site, for the entire study period.  

Diurnal variations in temperature, river stage and river discharge were assessed using an 

index of variation, similar to that employed by Fowler and Death (2001). The diurnal stage 
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variation index (DSVI) is a measure of the average difference between minimum (Smin) and 

maximum stage values (Smax) for every 24 hour period during the study (24 hours was chosen 

given the strong diurnal variation in flow): 
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The same calculation was used to produce a Diurnal Temperature Variation Index (DTVI) and 

a Diurnal Discharge Variation Index (DDVI).  

High concentrations of Cl- were measured within seepage from a dense matrix, deep within 

a debris fan (DFSdeep). Concentrations within DFSdeep were approximately 85 times greater 

than in samples of snow and glacial meltwater, and therefore Cl- concentrations were used 

in a simple groundwater mixing model to determine the proportional contribution of DFSdeep 

seepage from the debris fan, to total flow at each upwelling site.
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 Where DFSdeep% is the percentage contribution of water at each site derived from DFSdeep, 

Su is the concentration of Cl- at upwelling sites, and SD the average Cl- concentration of debris 

fan seepage.  

An integrated hydrological approach was used to investigate interactions between 

groundwater contributions from specific flow pathways and ecological processes. 

Accordingly, to determine whether there was a significant relationship between 

macroinvertebrate community diversity and groundwater flow pathways, the study related 

flow pathway contributions, determined from the groundwater mixing model, to a measure 
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of macroinvertebrate diversity using Spearman’s Rank Correlation. Macroinvertebrate 

diversity (H) was calculated using Shannon’s index of diversity (Shannon, 1949): 

    
 )ln( ii PPH

     

 5 

Where Pi is the relative abundance of each taxa, calculated as the proportion of individuals 

of a given taxa to the total abundance within the sample. 

To assess the influence of physicochemical variables upon individual taxa, variations in 

macroinvertebrate data were summarised using detrended correspondence analysis (DCA), 

and an ordination biplot created by independent correlations of axis 1 and axis 2 sample 

scores with physicochemical variables. The DCA with independent non-parametric analysis 

of additional variables was chosen in preference to a detrended canonical correspondence 

analysis (DCCA), which uses multiple linear regression to directly constrain relationships 

between sites and samples to the measured variables (Ter Braak, 1986; McCune, 1997), and 

is suitable for larger datasets. Variables used in the ordination were discharge, DDVI, DSVI, 

pH, Cl- concentration, chlorophyll, FPOM, CPOM, HG, sediment particle size, site elevation 

and PSI. Temperature data (DTVI) were not included in the DCA as this was measured at only 

five of the seven sites, and was therefore correlated separately with corresponding species 

data, using Spearman’s Rank Correlation. 

A Mann-Whitney U test was carried out between macroinvertebrate diversity of ephemeral 

and perennial streams, and between the diversity of streams in each month. To determine 

the significance of environmental variables upon individual taxa, the six most dominant taxa 

(accounting for 96% of the total community abundance) were correlated individually with 

each variable, using Spearman’s Rank correlations. Due to the strong seasonal gradient of 
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macroinvertebrate distribution, determined by the DCA, correlations were calculated 

separately for each month.  

3.3 Results 

A significant difference was determined between macroinvertebrate diversity of perennial 

streams, fed by higher percentage contributions from DFSdeep, and ephemeral channels, fed 

by higher contribution of glacial meltwater seepage (p<0.01); this difference was most 

marked during July and August (Fig.24A). Additionally within perennial streams there was a 

significant increase in macroinvertebrate diversity in August (p<0.01); this was not observed 

within ephemeral streams, although macroinvertebrate abundance increased (Fig. 24B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24: Seasonal variability in A) the macroinvertebrate diversity within ephemeral and perennial streams 

B) macroinvertebrate abundance. 
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During June there was a significant positive correlation between macroinvertebrate 

abundance and DFSdeep% (p < 0.05) (Fig. 25A), between FPOM and DFSdeep% (p<0.05) (Fig. 

25B), and between macroinvertebrate abundance and FPOM (p<0.05) (Fig. 25C). Following 

increases in organic matter concentrations during July and August across the study site, 

macroinvertebrate abundance and FPOM were no longer correlated to DFSdeep%. However 

macroinvertebrate abundance continued to be associated with organic matter (FPOM, 

CPOM and total organic matter, p<0.05, Fig. 25 D,E,F). 

 

The responses of individual taxa to physicochemical variables were examined using a DCA. 

Results demonstrated seasonal variation within each of the seven sites (Fig. 26); sites on axis 

1 were positioned primarily according to sample date, and on axis 2 according to site 

location, with a cumulative percentage variance of 90%. Perennial streams were grouped 

Fig. 25: Spearman’s Rank correlation between A) macroinvertebrate abundance and DFSdeep% in June B) FPOM 
and DFSdeep% in June C) abundance and FPOM in June D) abundance and FPOM in July E) abundance and CPOM 
in July and F) abundance and total organic matter (TOM) in July 
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into 3 monthly clusters from left to right; June and July (similar in macroinvertebrate 

distribution), and August. Ephemeral streams were grouped into only two clusters; June, and 

July/August. In both ephemeral and perennial streams a gradient of June through to August 

was determined, with the high (axis 1) eigenvalue of 0.316 suggesting that this seasonal 

gradient was particularly strong, accounting for 58% of the variance in taxa distribution. 

 

             

The ordination biplot (Fig. 27) indicated that ephemeral streams in June, and perennial 

streams in June and July were similar in macroinvertebrate composition, supporting a higher 

abundance of Baetis tricaudatus, Baetis bicaudatus, Clinocera spp., Zapada haysi and 

Alaskaperla ovibovis. The macroinvertebrate composition of streams differed in subsequent 

months; ephemeral streams supported a higher abundance of Chironomidae and Isotomidae 

Fig. 26: Detrended correspondence analysis of macroinvertebrate taxa and sample sites, demonstrating strong 

seasonal gradient om axis 1 
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in the July/August period, whereas perennial streams supported a higher abundance of 

Ecclisomyia spp, Isoperla petersoni, Plumiperla diversa, and Oreogeton spp. The strong 

seasonal gradient of axis 1 indicated that variables significantly correlated with this axis 

influenced taxa on a seasonal basis, while variables correlated more strongly with axis 2 

created differences in macroinvertebrate communities between sites (Table 3). 

  
 
 
 
 

 

 

 

 

 

DFSdeep% (positively correlated on axis 1 and negatively on axis 2) therefore varied with the 

macroinvertebrate community both temporally (increasing in concentration from June to 

August), and spatially (with greater DFSdeep% in perennial than in ephemeral streams). FPOM 

was correlated in a similar manner, indicating a seasonal increase in concentrations, and a 

gradient of FPOM concentration between sites which was similar to that of DFSdeep%. D50 

and site elevation (positively correlated on axis 2) varied predominantly between sites; 

ephemeral streams were situated at higher elevations and were characterised by greater 

sediment sizes.  

 

 

 

Axis 1 (seasonal) Axis 2 (site) 

DFSdeep%** (+ve) DFSdeep%* (-ve) 
Fine particulate organic matter@ (+ve) D50** (+ve) 
 Elevation** (+ve) 

Table 3: DCA independent Spearman’s Rank correlations of physicochemical variables (** p < 0.01; * p < 

0.05; 
@

 p < 0.1) 
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Several of the variables demonstrated a degree of autocorrelation which differed between 

months. In June elevation was significantly negatively correlated with FPOM (p<0.09), and 

with total organic matter (TOM) (p<0.05) (Fig. 28A, 28B); and in July was strongly negatively 

correlated with CPOM (p<0.09) (Fig. 28C). Concentrations of autochthonous and 

allochthonous matter varied throughout the study period. FPOM generally increased in all 

streams from June to August (Fig. 28D) and chlorophyll increased in August by a magnitude 

of ~4.5 times (Fig. 28E). CPOM increased by varying degrees from June to August (Fig. 28F), 

increasing at all sites in July, but only increasing further at sites A5, B2 and B3 in August.  

 

 

Fig. 27: Ordination biplot of detrended correspondence analysis, with independently correlated 

physicochemical parameters. Taxa: 1) Serromyia spp. 2) Hexatoma spp. 3) Megaleuctra spp. 4) 

Oligochaetae spp. a 5) Baetis bicaudatus 6) Chelifera spp. 7) Zapada haysi 8) Plumiperla diversa 9) 

Simuliidae 10) Ephydra spp. 11) Limniphora spp. 12) Ecclisomyia spp. 13) Pericoma spp. 14) Tipula ) 15) 

Hydrocarnia 16) Isotomidae 17) Chironomidae 18) Oligochaeta spp.b 19) Alaskaperla ovibovis 20) Baetis 

tricaudatus 21) Clinocera spp. 22) Oreogeton spp. 23) Isoperla petersoni 



 

99 

 

 

 

 

 

 

 

 

 

 

 

 

 

Associations between the six most dominant taxa and physical variables differed throughout 

the study period and between taxa (Table 4).In June several taxa were directly correlated to 

groundwater flow pathway (DFSdeep%), FPOM and site elevation (Z. haysi, Chironomidae, B. 

bicaudatus) (Fig. 29 A, B, C). Simuliidae, found only at site A4 during June, also demonstrated 

positive correlations with these variables. Ecclisomyia spp. however demonstrated a 

significant correlation with an alternative organic resource (CPOM). Abundance of  

Fig. 28: Seasonal heterogeneity in organic matter distribution in groundwater-fed streams A) correlation between 

elevation and FPOM in June B) correlation between elevation and TOM in June C) correlation between elevation and 

CPOM in July D) seasonal increase in FPOM throughout study period E) increase in chlorophyll concentrations in 

August F) site-specific increases in CPOM 
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Ecclisomyia spp. during June was low (total abundance = 4.8) with taxon collected only at 

sites A4 and B1 (sites of highest CPOM). The predator Oreogeton spp. maintained a 

significant positive relationship with Chironomidae throughout June and July (≤0.05) (Fig. 29 

D, E), and thus was indirectly associated with the food resource of Chironomidae (organic 

matter). Gut analysis of Oreogeton spp. confirmed the presence of Chironomidae.  

 

 

 

Table 4: Spearman’s Rank correlations between taxa and physicochemical variables (* p < 0.01; ** p <0.05; *** 

p ≤0.1; 
$
non linear relationship) 

 

Taxa June July August 

Positive Negative Positive Negative Positive Negative 

Zapada haysi DFSdeep%***
 

FPOM*** 
Pfankuch*** 
D50*** 

CPOM
$
 site 

elevation 
** 
D50*** 

pH*** site elevation 
*** 
TOM** 

Chironomidae DFSdeep%*** 
FPOM* 
TPOM*** 

site 
elevation** 

TOM** 
CPOM** 
FPOM** 

site 
elevation*
* 

D50** 
CPOM** 
TOM** 

DFSdeep%
$
 

Ecclisomyia CPOM** 
TOM** 

site 
elevation** 

CPOM** 
FPOM** 
TOM** 

site 
elevation*
* 

Bottom 
Pfankuch* 

 
- 

Oreogeton Chironomidae
** 
FPOM*** 

site 
elevation

$
 

Chironomidae 
** 
CPOM** 
FPOM** 
TOM** 

site 
elevation*
* 
 

 site 
elevation** 

Baetis 
bicaudatus 

DFSdeep%*** 
FPOM*** 
TOM*** 

site 
elevation** 

CPOM
$ 

 
site 
elevation*
* 

DFSdeep%** 
TOM*** 
CPOM*** 
Chlorophyll

$ 

Pfankuch
$ 

D50** 
Chironomidae
** 

Simuliidae DFSdeep%
$ 

FPOM
$ 

CPOM** 

site 
elevation

$ 
Site 
elevation** 

 
- 

Site 
elevation

$
 

Discharge*** 
CPOM** 
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In July, despite altered distribution of organic matter concentrations, several taxa continued 

to demonstrate positive associations with resources (Z. haysi, Chironomidae, B. bicaudatus, 

Ecclisomyia spp. and Oreogeton spp.), predominantly associated with CPOM. Abundance of 

Ecclisomyia had risen markedly throughout July (total abundance = 122) and was now 

established in four of the seven streams. Despite initially establishing in the site furthest 

Fig. 29: Seasonal variability in taxa distributions: A, B, C, association in June between  Z.haysi, Chironomidae and 

B. bichaudatus with DFSdeep%; D, E, relationship between Oreogeton spp. and  Chironomidae in June and July; F, 

association in August between Chironomidae and CPOM, found in high numbers in ephemeral streams; G, 

relationships between B. bicaudatus and chlorophyll in August; H, association in August between Oreogeton with 

Chironomidae, displaying low distribution in ephemeral streams 
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downstream in June, Simuliidae was increasingly found at upstream sites, demonstrating a 

positive correlation with stream elevation throughout July and August. 

 Associations between taxa abundance and resources were limited in August, with only 

Chironomidae and Baetis bicaudatus (Fig. 29 F, G) continuing to demonstrate positive 

correlations The latter also  demonstrated strong associations with TOM, chlorophyll, 

sediment grain size and PSI during this month. However although Oreogeton spp. did not 

maintain significant associations with Chironomidae during this month, strong associations 

were observed within perennial streams (Fig. 29H). Abundance of Ecclisomyia spp., having 

increased since July, was significantly positively associated with PSI during August, and was 

now established in all seven streams. No significant relationship was found between 

macroinvertebrates and stream temperature variability.  

3.4 Discussion 

This study established the association of local variations in sources and flow pathways of 

groundwater-fed streams upon macroinvertebrate distributions. Macroinvertebrate 

diversity and abundance were primarily associated with availability of organic matter, and 

with water flow pathways (contributions to surface flow from DFSdeep). Diversity was 

associated with duration of active channel flow, reflecting site proximity to the water table, 

and thus the relative contribution of the perennial DFSdeep groundwater seepage. DFSdeep 

seepage was also found to support higher macroinvertebrate abundance during periods of 

limited resource availability, as this flow pathway likely supplied FPOM to the surface 

streams.  Stability of flow, temperature and also of the stream channel, reflecting local 

variability in nested routes of groundwater flow (residence time), were less influential. 

Whilst we recognise that such an observational study demonstrates correlation, and not 
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causation, we to draw upon existing literature to provide plausible explanations for the 

associations determined. 

Significant differences between macroinvertebrate diversity and channel type (ephemeral 

channels fed almost solely by GMWriv seepage, and perennial streams receiving a greater 

contribution from DFSdeep) may reflect an influence of groundwater flow dynamics upon 

macroinvertebrate community distribution. Low diversity in ephemeral channels might be 

attributed to recolonisation constraints; for example the predominant recolonisation 

mechanism of ephemeral streams available to the univoltine taxa was upstream migration, 

involving low numbers of individuals (William and Hynes, 1976; Fengolio et al., 2002). As a 

result, high relative abundance of the multivoltine Chironomidae was observed within 

ephemeral streams, an effective coloniser with drought resistant eggs (Gray, 1981; Williams, 

1996).  

Diversity in perennial channels increased throughout the season, which can perhaps be 

attributed to increases in organic matter availability in July and August. Many taxa (e.g. 

shredders) have phenological adaptations, responding to temporal variations in resource 

availability (Cummins et al., 1989). The absence of Ecclisomyia spp. in most streams until this 

time might therefore reflect the synchronised timing of hatching with leaf litter fall 

(Cummins et al., 1989; Bjelke et al., 2005). Diversity in ephemeral streams did not increase, 

likely reflecting constraints on mid-season colonisation due to the univoltine nature of taxa 

(Robinson et al., 1992), and distance from the colonising pool of macroinvertebrates within 

the perennial streams (McCarthur and Barnes, 1985; Fritz and Dodds, 2005). Moreover, 

increased relative abundance of Chironomidae within ephemeral sites during these months 

may reflect aggregation of the taxon upon resources, coupled with limited competition. 
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The strong positive relationship between DFSdeep% and FPOM in June potentially indicates 

that organic matter is supplied to the streams by groundwater seepage through the debris 

fan, situated upon the valley-sides. The transport of particulate matter within subsurface 

environments, in addition to that of dissolved matter, has been widely recognised 

(McDowell-Bower et al., 1986). Entrainment of organic matter by throughflow, within the 

heavily vegetated, deeper soils of the valley-sides (Boisser and Fontvielle, 1995), may 

increase the organic matter content of DFSdeep waters. This flow pathway may therefore 

provide a valuable resource of FPOM during periods of low alternative organic matter 

availability. As positive associations between organic matter and macroinvertebrate 

communities typically indicate community aggregation upon resources (Richardson, 1991; 

Dobson and Hildrew, 1992), the results suggest that in June macroinvertebrates aggregated 

upon sites of greater DFSdeep discharge, which supplied FPOM resources to stream flow.  

Groundwater is potentially an important resource for benthic systems otherwise deprived of 

allochthonous and autochthonous vegetation for much of the year (Zah et al., 2001). The 

alteration in macroinvertebrate association from flow pathways and associated FPOM in 

June, to CPOM in July, might be explained by increases in organic matter concentrations 

from alternative sources in later months. Allochthonous and autochthonous inputs increase 

as streamside vegetation becomes established, leaf litter falls (Cowan and Oswood, 1984), 

and subsequently streamside shading is reduced (Rosemond et al., 2000; Hill et al., 2001). 

DFSdeep ceased to be the predominant supplier of FPOM, following the increased availability 

of organic matter resources in later months. Dependence upon the flow pathway for organic 

matter supplies was reduced and accordingly the relationship between macroinvertebrate 

abundance and DFSdeep weakened. The continual association between macroinvertebrates 
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and organic matter (FPOM, CPOM and total organic matter) throughout July, despite lack of 

correlation with DFSdeep%, might indicate that macroinvertebrates demonstrated resource 

tracking – the temporal covariance in redistribution of organic matter and 

macroinvertebrates (Rowe and Richardson, 2001; Melody and Richardson, 2004; Tiegs et al., 

2008). 

3.4.1 Variables influencing the macroinvertebrate community  

In addition to temporal and spatial variability in organic resources, several variables 

influenced macroinvertebrate community distribution. The positive relationship between 

sediment size (D50) and macroinvertebrate abundance might be attributed to refugia 

provided by larger substrates (Hart and Finelli, 1999) both in the hydrodynamic dead zone 

(Reynolds et al., 1991) and in the larger interstitial pore spaces (Davy-Bowker et al., 2006). 

These pore spaces entrain greater quantities of organic matter (Downes et al., 2000), and 

are likely to facilitate macroinvertebrate movement between the surface and the hyporheic 

zone in search of food or refugia. Larger substrates also increase surface area for 

colonisation and foraging (Ellner et al., 2001).  

The significant relationship between macroinvertebrate abundance and site elevation, a 

proxy for distance downstream, was attributed to the accumulation of organic matter within 

stream channel systems; sites situated at lower elevations were located in down-valley areas 

of the terrace, and received FPOM not only directly from upwelling groundwater, but also 

from dead or decaying macroinvertebrates, leaf litter reworked into FPOM, and streamflow 

transportation from upstream sites of groundwater upwellings. In addition to direct inputs 

of CPOM from adjacent streamside vegetation, these sites may also receive portions of that 

CPOM from upstream which decomposes at a slower rate (Cushing et al., 1993) as shredders 
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demonstrate a selective preference for highly microbially colonised leaf matter (Cummins 

and Klug, 1979). The strong relationships observed between CPOM, site elevation and 

macroinvertebrate abundance during July may therefore reflect increased CPOM quantities 

with establishment of streamside vegetation. This association further demonstrated the 

influence of resource distribution upon the macroinvertebrate community. 

Active drift was likely the dominant mechanism of resource tracking by which 

macroinvertebrates within the groundwater-fed streams were associated with organic 

matter, as observed by Richardson (1991) and Rowe and Richardson (2001). However, this is 

a taxa-specific process, being dependent upon taxa mobility, diet and instar stage (e.g. 

nutritional requirements), therefore monthly inter-specific interactions should be 

considered. 

3.4.2 Variables influencing individual taxa 

Relationships observed between abundance of individual taxa and resource availability 

throughout June and July support the suggestion that taxa within this stream network 

aggregate upon resource patches (Dobson and Hildrew, 1992; Richardson, 1991). The 

maintenance of associations between individual taxa and resources (FPOM in June, and 

CPOM in July and August) despite alterations in resource distribution over time, is again 

suggestive of resource tracking (Rowe and Richardson, 2001). Weaker correlations between 

some taxa and organic matter in August might be indicative of reduced resource limitations 

following leaf fall.  

Positive correlations between the abundance of Z. haysi, Chironomidae, B. bicaudatus and 

Simuliidae and organic resources (DFSdeep%, FPOM and site elevation) during June might 
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indicate resource aggregation, highlighting relationships between flow pathway 

contributions, FPOM, and downstream concentration processes. The significant correlation 

of Ecclisomyia spp. with CPOM also demonstrates aggregation at resources; as a facultative 

grazer, Ecclisomyia spp. may consume CPOM during resource scarcity (Zhang et al., 2003). In 

addition, the low abundance of this taxon may indicate a phenological adaptation; hatching 

is delayed until later months, when resource availability is greater (Cummins et al., 1989). 

Finally, the positive association of Oreogeton spp. with Chironomidae indicates possible 

predation by Oreogeton spp., supported by gut analysis. Similar findings were recorded by 

Parker and Huryn (2006) in an arctic mountain stream. 

Throughout July the continuation of associations with resources (CPOM) of Z. haysi, B. 

bicaudatus, Chironomidae, Ecclisomyia spp. and Oreogeton spp., at downstream sites, might 

suggest further resource aggregation, and hence resource tracking. Changes from 

associations of several taxa from FPOM in June to CPOM in July may be related to 

dependence of earlier instars upon finer materials (Oliver, 1971; Richardson, 1992), or upon 

increased availability of CPOM during this month. Simuliidae however did not aggregate at 

sites of higher resources in July; abundances during this month were greater at upstream 

sites, irrespective of resource availability. Lower abundance downstream could be related to 

competition with Z. haysi. Alternatively Oreogeton spp., known predators of Simuliidae (Bay, 

1974; Werner and Pont, 2003) were predominantly located downstream, and may control 

population numbers (Sommerman, 1962). Simuliidae remained at upstream sites in August, 

supporting indications that they developed favourably upstream where competition and 

predation stressors were potentially lower. 
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In August, following further increases in CPOM at some sites, and availability of additional 

food types, associations with resources were increasingly taxa-specific, likely reflecting 

individual traits. The lack of association between Z. haysi and CPOM may indicate that 

resource supplies for this taxon were greater than population densities at several sites. As 

taxa aggregation occurs predominantly in resource depleted environments (Tiegs et al., 

2008), increased availability of CPOM at some sites may reduce associations between taxa 

and resources, as resource ‘islands’ (Webster and Waide, 1982; Benfield et al., 2001) 

become less isolated. Alternatively, alterations in associations could reflect resource quality, 

as this may also influence macroinvertebrate distribution (Eggert and Wallace, 2003). 

Shredders in particular preferentially consume detritus highly colonised with microbial 

matter (Anderson and Sedell, 1979). Less limited by resource availability in August, Z. haysi 

may have aggregated in areas of higher resource quality. Associations have been made 

between stream acidity and reduced shredder abundance, reflecting limited microbial 

activity at lower pH, which reduces detritus quality (Mulholland et al., 1992). The positive 

associations observed between Z. haysi abundance and pH during August might therefore 

indicate more selective resource tracking of higher quality organic matter.  

Unlike Z. haysi, Chironomidae maintained a positive association within CPOM in August, 

indicative of continual resource tracking throughout the study period. As active drift is a 

recognised behavioural trait of this family (Oliver, 1971), it is likely that this is the dominant 

mechanism involved. The degree to which macroinvertebrates use emigration to avoid food 

limitation, and to compete for access to resources is taxa-specific (Rowe and Richardson, 

2001); this may explain the persistence of Z. haysi at downstream sites despite relocation of 

Chironomidae. It is possible that due to higher population densities, Chironomidae remained 
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closer to a resource/density threshold, and therefore continued to demonstrate active drift. 

Higher abundance at ephemeral sites reflect enhanced colonisation capabilities, attributed 

to physiological and behavioural traits. These include drought resistant eggs (Gray, 1981; 

Williams, 1996) which enable Chironomidae to rapidly colonise channels following flow 

initiation. Activation of eggs by progressive initiation of stream-flow upstream of sites 

(Williams and Hynes, 1976a) may enable a continual downstream influx of Chironomidae, 

sustaining active drift in ephemeral streams. 

Oreogeton spp. maintained associations with Chironomidae in all perennial streams; 

however colonisation of ephemeral streams was limited, despite significant increases in prey 

at these sites. This is likely due to the need for long distance upstream migration; 

colonisation of ephemeral streams is predominantly dependent upon upstream migration 

from perennial sites, and numbers involved are low (William and Hynes, 1976; Fengolio et 

al., 2002). Although sites B2 and B3 offered optimum habitat conditions, colonisation 

limitations may have restricted macroinvertebrate distribution (Fonseca and Hart, 2001). 

In addition to maintaining associations with CPOM in August, B. bicaudatus were associated 

with periphyton. This taxon may adapt its diet to suit resource availability (Brown, 1961; 

Mihuc and Minshall, 1995). Weaker associations between taxa distribution and resources in 

August may be due to the availability of multiple food sources. Alternatively as B. bicaudatus 

cease food consumption immediately prior to emergence (Moore, 1977), alterations in 

distributions and weak relationships might be partially explained by differences in larval 

stages and associated nutritional requirements. 

The correlation of Ecclisomyia spp. with Pfankuch stability in August may reflect instar stage. 

Several species of later instars of cased caddis, including Ecclisomyia spp., have 
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demonstrated a propensity to move between the benthic and hyporheic zone (Wright-Stow 

et al., 2006) to collect well conditioned CPOM, which more mature larvae are better able to 

consume (Winterbourn and Wright-Stow, 2003). Later instar Ecclisomyia spp. may therefore 

assemble in sites of higher disturbance, where increased sediment porosity facilitates 

movement between zones (Brunke and Gonser, 1997). As Ecclisomyia spp. typically hatch in 

late summer, populations during June and July were likely to have been predominantly early 

instars, remaining at the surface, utilising benthic resources. In August however, a more 

mature population of Ecclisomyia spp. potentially relocated to areas of greater porosity, 

optimising resource availability.  

Associations between flow pathway variability and both macroinvertebrate abundance and 

diversity might suggest that groundwater flows influence macroinvertebrate communities, 

Distinct temporally and spatially dynamic variability of groundwater flow pathways were 

associated with the physicochemical variables of recipient streams and with 

macroinvertebrate communities in a more complex manner than previously established. 

Variability in temperature and flow, and channel stability, reflecting local routes of 

groundwater flow, were less significantly associated with the benthic community.  

3.5.Conclusion 

These results suggest that the availability of organic matter appears to be the varaiable most 

strongly associated with benthic macroinvertebrate distribution in groundwater-fed streams 

in the Toklat catchment. Given the strong dependence of macroinvertebrates upon organic 

matter established in the literature, the results might indicate that organic matter 

distribution influenced macroinvertebrate communities.  The degree to which groundwater 

flow pathways were associated with the macroinvertebrate community varied spatially, 
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temporally and between taxa. Results indicate that during June, FPOM was predominantly 

supplied by the DFSdeep flow pathway, a resource upon which several taxa aggregated. 

However, as alternative supplies of organic matter became available, in greater 

concentrations, correlations were observed between these same taxa, CPOM and distance 

downstream, likely demonstrating the use of resource tracking to associate with sites of 

higher resource concentration downstream. Distribution was no longer related to DFSdeep%, 

likely as this flow pathway ceased to be the predominant source of organic matter to the 

groundwater-fed streams. A delicate seasonal balance in subarctic systems between 

resource depletion and surplus was observed. Due to the barriers to many taxa in colonising 

ephemeral streams in large numbers, differences in diversity between ephemeral and 

perennial groundwater-fed streams were observed, and many taxa could not track resources 

within ephemeral sites.  

In conclusion positive correlations between both macroinvertebrate abundance and 

individual taxa with contributions from DFSdeep seepage indicated that groundwater flow 

pathways may be a key driving factor of macroinvertebrate communities in groundwater-fed 

streams. The strength of this relationship was dependent upon taxa-specific traits, and 

occurred primarily in locations or during seasons where alternative allochthonous resources 

were scarce. However, following increases in organic matter availability only perennial 

streams, fed by higher DFSdeep contributions, could support associated increases in 

macroinvertebrate diversity. Studies into macroinvertebrate ecology in streams receiving 

flow from groundwater within arctic and alpine environments, should therefore consider 

groundwater as a spatially and temporally dynamic influential factor. 
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4. INFLUENCE OF ENVIRONMENTAL STABILITY OF 

GROUNDWATER-FED STREAMS ON HYPORHEIC FAUNA, ON 

A GLACIAL FLOODPLAIN, DENALI NATIONAL PARK, ALASKA  

The influence upon hyporheic macroinvertebrates of differences in environmental stability, 

reflecting local variability in groundwater residence time, was investigated at depths of 15cm 

and 30cm, within groundwater-fed streams in an Alaskan glacierised floodplain. Surface-

water temperature, streamflow, stream bed stability and sediment size were measured in 

summer 2008, and combined into a multivariate index of environmental stability. The 

hydraulic gradient, pH, organic matter availability and water chemistry were also measured 

to characterise local variability between groundwater-fed streams. Hyporheic 

macroinvertebrate diversity was significantly positively correlated to the multivariate index 

of environmental stability, with reductions in diversity at the surface; this is potentially 

indicative of greater macroinvertebrate use of the hyporheic zone at less stable sites. Two 

uses of the hyporheic zone were identified. Firstly, a refugia response was indicated by 

contrasting surface and hyporheic distribution patterns of several taxa, correlated with 

several environmental variables. These included variability in water temperature and channel 

stage, stream bed stability and availability of organic matter. Secondly, covariance in surface 

and hyporheic distribution of some taxa dependent upon stream bed stability and resource 

availability suggested the use of the hyporheic zone as an extension of the benthic habitat. 

Local differences in groundwater residence time between groundwater-fed streams created 

sufficient environmental instability in some streams to elicit a macroinvertebrate response. 
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4.1 Introduction 

The use of the hyporheic zone as a refuge by macroinvertebrates has been predominantly 

investigated in relation to discrete disturbance events, such as floods, spates and droughts 

(Palmer et al. 1992; Cooling and Boulton, 1993; Dole-Oliver et al. 1997; Matthaei et al. 1999). 

However there is a paucity of information regarding the association between 

macroinvertebrates and the frequency of disturbance events, or ‘environmental stability’ 

(Dole-Olivier, 1997), which is characterised by flow and temperature regimes and measures 

of river channel stability (Fowler and Death, 2001; Death and Winterbourn, 1994). Limited 

research in this area has established that macroinvertebrates may demonstrate a refugia 

response to variability in environmental stability (Death and Winterbourn, 1995; Fowler and 

Death, 2001). Local differences in environmental stability might be found between 

groundwater-fed streams, reflecting differences in water sources, flow pathways, and 

groundwater residence time (Ward et al. 1999). However it has not been established 

whether the degree of local variability in environmental conditions observed between 

groundwater-fed streams is of sufficient magnitude or frequency to constitute a disturbance, 

and therefore to influence distribution within the hyporheic zone.  

Spatial and temporal variations in the physicochemistry of groundwater-fed streams may 

arise both from differences within and between flow pathways. First, streams may receive 

groundwater flow from different sources which have followed distinct flow pathways. In 

glacierised catchments, the characteristics of groundwater-fed stream flow may be 

influenced by subsurface seepage from the main glacial channel (Malard et al. 2000), with 

contributions increasing seasonally with glacial ablation (Collins, 2002), or from valley side 

seepage. Temporal variability in physicochemical characteristics may result from seasonal 
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transitions from snow-melt to rain-fed catchments (Theakstone, 2003). Second, 

physicochemistry might also be influenced by conditions that vary within a single flow 

pathway, such as groundwater residence time (Brunke and Gonser, 1997). Both valley-

bottom and valley-side deposits are typically heterogeneous, characterised by a series of 

locally variable hydrogeologic facies (Robinson et al. 2008). Water within these facies may 

therefore follow several alternative routes of flow (Fig. 2), which differ in groundwater 

residence time, reflecting the permeability and connectivity of the sedimentary facies 

(Robinson et al. 2008; Ward et al. 2002). Attenuation of daily flow and temperature maxima 

may occur, whereby in areas of lower sediment porosity the amplitude of diurnal 

temperature and discharge variability becomes progressively reduced and out of phase with 

that demonstrated by the source (e.g. Hoehn and Cirpka, 2006). This attenuation might 

occur to different degrees within different routes of flow, reflecting the variability in 

groundwater residence time, and length of flow pathway (Brunke and Gonser, 1997). Flow 

attenuation may affect not only temperature and stage variability (Brunke and Gonser, 

1997), but also substrate stability, bed load transport, bed sediments and associated benthic 

communities (Milner et al. 2001). 

Macroinvertebrates are particularly sensitive to environmental variables including water 

temperature (Hynes, 1970; Milner and Petts, 1994), flow velocity (Edington, 1968; James et 

al. 2008), dissolved oxygen (Nebeker, 1972; Connolly et al. 2004), stream bed porosity (Olsen 

and Townsend, 2003), organic matter abundance (Anderson and Sedell, 1979; Lepori and 

Malmqvist, 2007 ) and the variability of these factors over time (Hax and Golladay, 1998). As 

the hyporheic zone, an extensive transition zone situated between the groundwater and 

surface water habitat, is a stable area typically only affected by high discharge events 
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(Matthaei et al. 1999) and generally well developed in permeable glacierised floodplains 

(Battin et al. 2003), it may provide refuge for macroinvertebrates from in-stream 

disturbance. To seek refuge however several conditions must be fulfilled; 

macroinvertebrates must be sufficiently stressed (James et al. 2008), i.e the disturbance 

must be of sufficient magnitude to alter surface conditions to a degree requiring 

macroinvertebrate relocation (James et al. 2008; Olsen and Townsend, 2005; Del Rosario 

and Resh, 2000). Additionally relocation will only occur where interstitial space, food 

availability and several other physicochemical variables permit (Williams. 1984). Thus 

macroinvertebrate responses to instability may be specific to individual taxa (Palmer et al. 

1995), and be dependent upon their individual traits e.g. temperature tolerance, feeding 

habits and mode of movement (Usseglio-Polatera et al., 2000). 

The influence of variability in environmental conditions of groundwater-fed streams on 

macroinvertebrate communities has yet to be considered in detail. In particular, it is unclear 

whether local variability in flow dynamics can create disturbance of sufficient frequency and 

magnitude to elicit macroinvertebrate relocation, and thus whether groundwater-fed 

streams, subject to different degrees of environmental variability, will display marked 

differences in hyporheic fauna. Accordingly, in this paper we use a multivariate index of 

environmental stability (a combination of several surface environmental variables) in 

addition to a range of physicochemical variables, to determine the influence of local 

differences in environmental stability between groundwater-fed streams on hyporheic 

macroinvertebrate diversity and distribution, in a glacierised catchment in Denali National 

Park, Alaska. The objectives of the study were: 
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1. to determine the local variability in environmental stability, and in additional 

physicochemical variables between groundwater-fed streams;  

2. to establish the extent to which environmental stability (or additional 

physicochemical variables) of groundwater-fed streams influences macroinvertebrate 

distribution within the hyporheic zone; and 

3. to ascertain how ecological traits of individual taxa might determine different uses of 

the hyporheic zone. 

4.2 Methodology 

4.2.1 Field site 

Areas of groundwater upwelling were studied across the floodplain of a section of the 

middle fork of the Toklat River in Denali National Park, Alaska (63o29’19.54”N, 

149o57’54.05”W) (Fig. 30A), at a point ~12km from its source, where the valley bottom is 

1300 m wide (Fig. 30B). The site was selected for the study of the influence of varying 

environmental stability upon macroinvertebrates within the hyporheic zone, due to the 

extensive network of groundwater-fed streams (Fig. 30C), and the proximity of the terrace to 

several water sources (snow-melt, glacial ice-melt and rainfall), likely to influence stream 

hydrology and physicochemistry.  

The Toklat is an extensively braided north flowing tributary of the Yukon River.Total monthly 

precipitation was 162mm, and in winter was 116mm, while mean daily temperatures 

recorded throughout the study period at the Toklat Road Camp (5 km to the north) were 

11.8°C (day) and 4.7oC (night) (WRCC, 2008). A significant proportion of river flow was 

derived from ice- and snow-melt from a number of small valley glaciers upstream. The area 
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of the upstream catchment is ~115km2 with elevations ranging from 1835m to the south, to 

1197m in the valley-bottom, with the interfluves ranging in height from 1350m to 1319m to 

the east and west respectively. The study site comprised a fluvial terrace, 0.9km2 in area, on 

the eastern side of the valley. The surface of the terrace, at its downstream extent, lies 

approximately 1m above the current floodplain. A series of 10 - 15 groundwater springs 

emerge, in most cases from clearly defined springheads, and flow across the down-valley 

(northern) margin of the terrace, before joining the Toklat River downstream. 

The underlying geology comprises Devonian and Silurian clastic and carbonate rocks in the 

north of the catchment, with Triassic calcareous sedimentary and submarine basalt, and 

Paleocene volcanic units (Wilson et al., 1998) along vegetation-covered valley sides, upon 

which are situated several debris fans and talus cones. The valley-bottom consists of glacial, 

fluvial and colluvial deposits.   

4.2.2 Data collection 

The main study period extended from July 24thth to September 4th 2008, during which time 

seven streams, fed solely by groundwater discharge, were studied across the fluvial terrace. 

Surface and hyporheic measurements of physicochemical variables were taken. Hyporheic 

water levels were monitored twice daily, at piezometer nests installed at the locations 

indicated in Fig. 30C (sites A1, A2, A4, A5, B1, B2 and B3). Each nest comprised two 

piezometers (5cm outer diameter, 0.4cm holes drilled over basal 6cm) installed to depths of 

0.5 and 1m below the surface using an installation system described by Baxter et al., (2003).  

On five occasions surface water velocities were determined at 10cm intervals across each 

groundwater-fed stream at points adjacent to each piezometer nest. In-stream water 
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temperature and water pressure was recorded automatically at the 7 sites using data loggers 

with pressure transducers and temperature loggers (Appendix B). Temperatures were also 

monitored continuously at a depth of 20cm (A2 and B1) and 50cm (B3). Throughout June 

2008 to June 2009, Gemini Tinytag Plus recorders monitored in-stream temperatures at 

selected sites. These data were used to determine stream flow permanence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30: Schematic of field site location and sampling sites A. Toklat catchment B. Sampling sites C. Colonisation 

pot distribution within hyporheic zone D. Site location within State of Alaska 

Colonisation pots, comprising cylindrical steel cages (15cm in height, 8cm diameter, mesh 

size 1cm2), were inserted into the river bed at adjacent points to depths of 15 & 30cm below 
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the surface at five sites, A1, A4, B1, B2 and B3 (Fig. 30D). Individual pots were used to 

prevent macroinvertebrate movement between depths during extraction. Holes were 

excavated by hand to the appropriate depth, and each colonisation pot was packed with 

sediment in stratigraphic order. The process of inserting the colonisation pots was 

problematic due to the coarse substrate (small to medium cobbles overlying coarse gravel). 

Given the installation time, and the narrow channel width, only one pair of pots could be 

installed per site. In our study, a tarpaulin bag with reinforced top and cable was placed 

around the base of each pot (to facilitate subsequent removal) before inserting the pot in 

the excavated hole. Remaining substrate was placed around pot margins and over the top, 

whilst ensuring that the cable extended to the surface. Colonisation pots were then left in-

situ for six weeks to enable macroinvertebrate colonisation. 

During extraction the cable was pulled vertically, driving the wire-reinforced tops to the 

surface and extending the tarpaulin bags. This minimised macroinvertebrate loss. Sediment 

was placed in bags with 90% ethanol and subsequently rinsed and filtered through 0.65 µm 

mesh. Due to the quantity of fine sediment, some macroinvertebrates were poorly 

preserved and thus only identified to family level. Hence all macroinvertebrates were 

grouped to family level to determine diversity.  

At the end of the study period, five replicate benthic macroinvertebrates samples were 

collected at all sites using a Surber sampler (350 µm mesh), and preserved in 90% ethanol. 

These provided reference samples of the surface benthos (Fowler, 2002). Surface 

abundances were calculated as a mean of the 5 replicates. Although the mesh of the Surber 

samples, compared with the waterproof tarpaulin used in the colonisation pots, may lead to 

underestimation of smaller taxa within surface samples, this study compared 
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macroinvertebrate distribution between sites at the surface to distribution between sites 

within the hyporheic zone; direct comparisons of abundance between surface and hyporheic 

sites are not made. The difference in sampling methodology did not therefore influence the 

conclusions. Organic material collected in the Surber sampler, having been separated from 

the macroinvertebrates, was dried at 65oC, and sieved into coarse (>1mm) and fine (<1mm) 

fractions, prior to ashing in a furnace at 540oC for 2 hours.  Ash free dry mass was 

determined by re-weighing, and both fine particulate organic matter (FPOM) and coarse 

particulate organic matter (CPOM) were calculated (mg/m2). 

Colonisation pots and Surber sampling sites were located within 2m of temperature and 

pressure sensors, except at A1 and A4, where representative water pressure and 

temperature data were taken from measurements at A2 and A5 respectively. These sites 

were within ~ 4m of each pot (Fig.30C). Temperature and river stage data from these loggers 

are referred to as sites A1 and A4, to correspond with colonisation pot samples. Surface pH 

was measured twice using a Myron meter during the six week period. The bottom 

component of the Pfankuch Stability Index (PSI) (Pfankuch, 1975) was also evaluated at the 

conclusion of macroinvertebrate data collection. This involved summing scores assigned to 

rock angularity and brightness, particle consolidation and size distribution, scouring and 

deposition, and abundance of aquatic vegetation. It was thought that the bottom 

component of the index would have the greatest relevance to the benthic community 

(Death and Winterbourn, 1994). Substrate size was determined at each site at this time, by 

measuring the b axis of 100 randomly selected stones (Burgherr et al., 2002), and the D50 

was subsequently calculated. Macroscale Channel Stability (MSS) was also measured and 

calculated at each site. MSS is a dimensionless measure of the total width of wetted channel, 
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measured at three points over a 15m reach (W1, W2 and W3) divided by the total active 

channel width, taken at the same three locations (V1, V2 and V3) (Snook and Milner, 2001): 

 MSS = (W1/V1) (W2/V2) (W3/V3)       6 

                3 

Surface-water samples were collected at 14-day intervals at all upwelling sites, 

supplemented by extensive water sampling throughout the catchment, to characterise 

sources of subsurface flow (including samples of glacial meltwater, snow-melt, debris fan 

seepage flow and rainfall), using the natural tracer Chloride (Cl-). Water samples were 

collected from mid-channel flow, in Nalgene poly-ethene bottles, pre-rinsed with de-ionised 

water. Samples were filtered through 0.45µm nylon membrane filters, and refrigerated. 

Using an Anion Dionex ICS 2000 samples were then analysed for Cl- concentration 

(instrumental precision for the analysis was 0.25ppm). 

4.2.3 Data analysis and Stability Index calculations 

Flow permanence of individual groundwater-fed streams was assessed using 2008 over-

winter data of streamflow temperature. Perennial streams were identified where site water 

temperature, or that of a location directly upstream, exceeded 0oC throughout the year 

(Appendix C). Ephemeral streams were characterised either by in-stream temperatures 

falling significantly below 0C (during winter), or at several sites, by the observed absence of 

flow.  

The hydraulic gradient (HG) for each piezometer nest was calculated as the difference 

between the stream water level and the water level in the 50cm piezometers, divided by the 

vertical distance. Also, Stream Rating equations derived for each cross section, enabled 

stream discharge to be estimated continuously for each site, during the study period. Mean 
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discharges over the summer were calculated for each site and used in the subsequent 

analysis.  

The thermistor at B2 malfunctioned; regression analysis was run between the known water 

temperature of this site over a one-week period prior to data logger malfunctioning, and all 

other streams during the same time period (15th July 2008 to 22nd July 2008). A strong 

relationship was observed between water temperature at B2 and B3 (p = 0.01) enabling 

calculation of water temperature at site B2 for the 6 week period. 

Variability in stream stage and temperature were assessed using an index similar to that 

employed by Fowler and Death (2001). Measures of variability were used due to the 

inadequacies identified in previous studies when using a mean to make comparisons 

between channel types (Burgherr et al., 2002; Tockner et al., 1997). The Diurnal Stage 

Variation Index (DSVI) is calculated by determining the difference between the minimum 

(Smin) and maximum stage values (Smax) for every 24 hour period over the 6 week study 

season (the time period of 24 hours was chosen due to the strong diurnal variation in flow):  

DSVI = ∑ (Smax - Smin)          7 

  n 

Where n = number of values 

The same technique was followed to determine a Diurnal Temperature Variation Index 

(DTVI) for each site using proximal surface stream water temperatures 

A multivariate index of environmental stability was calculated, based upon the technique 

described by Death and Winterbourn (1994), which incorporates five surface environmental 

variables: variability in stream stage (DSVI) and stream temperature (DTVI), the bottom 

component of PSI, MSS, and sediment size (D50). A principal components analysis (PCA) was 



 

133 

 

performed to reduce these five variables to one multivariate indicator of stability (Death and 

Winterbourn, 1994; Townsend et al., 1997; Burgherr et al., 2002). The PCA correlation 

method was chosen, as this method standardises the numerically heterogeneous variables, 

prior to analysis. As in Death and Winterbourn (1994), axis 1 scores from the PCA were then 

rescaled (lower values indicate greater stability), and applied as the stability index. The 

environmental stability index was correlated with Shannon’s Diversity Index (representing 

macroinvertebrate diversity at family level) using Spearman’s Rank Correlation. A Kruskal-

Wallis test was used to investigate whether differences in diversity between depths were 

significant. 

Cross correlations between taxa and physicochemical variables were performed using 

Spearman’s Rank Correlation to identify interspecific interactions. The variables used in the 

analysis included mean discharge (over the study period), mean hydraulic gradient, pH, 

Pfankuch Stability Index, MSS, DSVI, DTVI, FPOM, CPOM, Cl- and the multivariate index of 

environmental stability. Although, within a site, depth is generally considered the primary 

determinant of interstitial biota distribution (Dole, 1985 in Dole-Olivier et al., 1997), when 

determining variation between sites, within-depth analysis is required, as in Dole-Olivier et 

al., (1997). Accordingly, as the primary focus in this study was between site variation, 15cm 

and 30cm datasets were analysed separately. Finally, comparisons were made between the 

surface and hyporheic distributions of taxa between sites.  

4.3 Results 

4.3.1 Physicochemical processes  

In-stream temperature at B1, and upstream of A1 and A4, constantly exceeded 0oC 

throughout the year (Appendix C), indicating perennial flow at these sites. The stream beds 
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were dry at B2 and B3 at the start of the field campaign in May 2008. Water table elevations 

increased throughout the study period, which led to the initiation of streamflow as the rising 

water-table intersected the stream bed (first at B3, followed by B2). Additionally, analysis of 

water samples revealed high concentrations of Cl- at a stream fed by seepage through 

colluvial deposits upon the valley side (15ppm) (DFSdeep), and lower concentrations in the 

main glacial channel (0.3ppm) (GMWriv). Cl- concentrations within groundwater-fed streams 

were highest at A1, A4 and B1 (3.35ppm, 4ppm, and 3.1ppm respectively), but 

comparatively low at B2 and B3 (1.02 and 0.9ppm respectively). 

Mean diurnal stage variations (DSVI) differed markedly between sites (Fig. 31A). DSVI at A4, 

B1 and B2 was relatively low (mean DSVI at stream B2 was 0.003), and constant over time. 

At A1 and B3 the DSVI was more variable and, on average, much greater (mean DSVI at site 

B3 was 0.05). Similarly in-stream DTVI exhibited low variability at B2 and A4 (0.5 and 0.6 

respectively; Fig. 31B). Much larger daily variations in temperature were observed at B1, A1, 

and B3 (DTVI of 1.42, 2.05, and 2.34 respectively). Subsurface temperatures, monitored at 

A1, B1 and B3 to characterise the hyporheic zone, revealed significant differences in 

temperature stability between the surface and hyporheic zone at all dual-monitored sites 

Fig. 31 Heterogeneity in A) DSVI and B) DTVI between groundwater-fed streams; box plots indicate mean 

value, and upper and lower quartiles 
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(p<0.01); the hyporheic zone demonstrated lower temperature variability than surface flow 

throughout the study.  

The PCA of the multivariate environmental stability score determined that 65% of axis 1 

variability was accounted for by DSVI, DTVI, PSI, MSS and sediment size; all individual 

variables contributed to this relatively equally. Axis 2 accounted for an additional 16%. Death 

and Winterbourn (1994) demonstrated how the PCA ordination technique effectively 

integrates multiple individual measures of instability into a single index. Here the rescaled 

scores indicate that B3 is the most stable, and B2 the least stable site (Fig. 32, Table 5). 

 

 

 

 

 

 

 

  

 

4.3.2 Macroinvertebrate community dynamics 

Mean taxa richness within benthic sites was 12.6, and mean total abundance 99.85. Mean 

taxa richness and abundance within the hyporheic zone were considerably lower; at 15 and 

30cm richness was 5.4 and 4.2, and abundance 39.2 and 22.2 respectively. 

Site Axis 1 Axis 2 Stability index 

B2 -0.9150 -0.5515 0.085 

A4 -0.4564 0.6988 0.5436 
A1 -0.2184 -0.0260 0.7816 
B1 0.1374 0.115 1.1374 
B3 1.4524 -0.1328 2.4524 

 

Table 5: PCA axis 1 and 2 scores, and re-scaled stability index 

Fig. 32: Multivariate environmental stability scores created from re-scaled axis 1 scores of PCA. The five variables 

used as indicators of stability in the PCA represent mean values 
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Macroinvertebrate diversity and abundance at 15cm was predominantly greater than at 

30cm (Fig. 33A and 33B). However, a Kruskal-Wallis test indicated no significant difference 

between the two hyporheic depths. 

Fig. 33: Between-site and depth distribution of hyporheic macroinvertebrate A) diversity and B) abundance 

A significant positive relationship was determined between macroinvertebrate diversity 

within the hyporheic zone and sites of lower surface environmental stability (p < 0.01; Fig. 

34A). The correlation between benthic macroinvertebrate diversity and environmental 

stability was not significant. A significant quadratic association (p <0.05) between hyporheic 

abundance and index of environmental stability was determined (Fig. 34B), which diverged 

from the significant positive association between benthic macroinvertebrate abundance and 

environmental stability (p<0.05).  

Fig. 34: Index of stability with average surface and hyporheic macroinvertebrate A) Shannon’s diversity and B) 

abundance  
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Several significant correlations were determined between individual taxa and environmental 

variables (Table 6) which were compared to surface macroinvertebrate distributions (Fig. 

35).  

 

 

 

At 15cm depth a significant positive relationship between Empididae and the multivariate 

index of environmental stability contrasted with a negative, though not significant surface 

distribution (Fig. 35A). Nemouridae demonstrated a significant positive relationship with Cl- 

concentration, and a non-linear relationship with PSI, and Chironomidae a significant 

negative relationship with PSI. Both demonstrated higher hyporheic abundance at sites 

where surface abundance was low (Fig. 35B and 35C). Similarly Baetidae, positively 

correlated with both DTVI and DSVI, and negatively with FPOM, demonstrated contrasting 

surface and hyporheic distributions (Fig. 35D and 35E). Surface abundance of Limnephilidae 

Taxa 15cm 30cm 

Positive Negative Positive Negative 

Chironomidae  PSI* Cl-* FPOM*, TOM* 
Empididae Stability 

index** 
   

Nemouridae PSI@ 

Cl- * 
 PSI*, D50*, 

Stability 
index* 

 

Tipulidae  DTVI*, 
stability 
index* 

  

Chloroperlidae   DSVI*, pH**,  FPOM** 
Baetidae DSVI*, DTVI*, 

pH* 
FPOM*   

Limnephilidae PSI@ CPOM@ PSI@ CPOM@ 

Table 6: Spearman’s correlation between taxa abundance and physicochemical variables (*= sig at 0.05 level,** = 

sig at 0.01 level, @ = non-linear relationship) DSVI diurnal stage variation index; DTVI diurnal temperature variation 

index; PSI Pfankuch stability index; D50 sediment size; MSS macro scale stability; FPOM fine particulate organic 

matter, CPOM coarse particulate organic matter, TOM total organic matter, Cl
- 
Chloride 
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demonstrated a positive association with PSI, and hyporheic abundance at 15cm 

demonstrated a non-linear relationship with both PSI (Fig. 35F) and CPOM (Fig. 35G). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 35: Comparisons between the distribution of surface and hyporheic macroinvertebrates. A) Empididae, B) 

Nemouridae, C) Chironomidae, D) and E) Baetidae, F) and G) Limnephilidae, H) Chloroperlidae  
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At 30cm Chironomidae and Nemouridae continued to demonstrate contrasting surface and 

subsurface abundances. At this depth Nemouridae was significantly positively correlated to 

PSI and the multivariate index of environmental stability. Chironomidae was significantly 

positively correlated to Cl- and negatively to CPOM. Hyporheic and surface distributions of 

Limnephilidae corresponded at 30cm, as did those of Chloroperlidae (Fig. 35H). 

Limnephilidae maintained the non-linear correlations with CPOM and PSI, and 

Chloroperlidae was significantly positively correlated to DSVI and negatively to FPOM.  

4.4 Discussion 

Prior to this research, the hyporheic zone had been identified as a refugia for 

macroinvertebrate taxa, predominantly with regard to discrete disturbance events within 

surface streams (Matthaei et al., 1999; Palmer et al., 1992). However findings from this 

study might indicate that macroinvertebrates also use the hyporheic zone in response to 

local variability in environmental stability. This variability was created by differences 

between sites in the attenuation of groundwater which contributed to streamflow, reflecting 

local differences in groundwater residence time. The research therefore indicates that 

groundwater flow dynamics may create sufficient levels of variability to elicit 

macroinvertebrate relocation. 

4.4.1 Physicochemical heterogeneity of groundwater-fed streams  

Cl- may be used as an indicator of proportional contribution of valley side seepage flow, due 

to the markedly higher concentrations within the DFSdeep flow pathway, situated within the 

valley side. The ephemeral regimes of B2 and B3, combined with their lower Cl- 

concentrations, suggests these streams receive less flow from the DFSdeep pathway, but a 
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high contribution from GMWriv seepage. The opposite extremes of DSVI and DTVI observed 

between the two streams demonstrate different degrees of flow and temperature regime 

attenuation, reflecting variations in the residence time of the glacial meltwater (Hoehn and 

Cirpka, 2006). This suggests there is a difference in the length of the flow routes within the 

GMWriv pathway to B2 and B3, with B3 potentially linked to the glacial meltwater channel by 

a shorter flow route. Similarly within the perennial streams of higher Cl- concentrations, the 

low DTVI of A4 suggests that this stream is connected to the perennial DFSdeep flow pathway 

via a longer flow route than A1. 

Reduced flow attenuation in a glacial environment affects substrate stability, increases bed 

load transport and disrupts bed sediments and associated benthic communities (Milner et 

al., 2001). This would account for the greater PSI, MSS and sediment size found at A1 and 

B3. Although all environmental variables ranked A1 and B3 as the least stable sites, no two 

sets of variables scaled the sites in the exact same order. A degree of variability existed 

between individual stability indicators (Death and Winterbourn, 1994) illustrating the need 

for a multivariate index of stability in characterising streams. The PCA multivariate analysis 

indicated that A1, B1 and B3 were the least stable streams.  The hyporheic zone of these less 

stable sites might therefore be expected to support a greater diversity of 

macroinvertebrates than A4 and B2. 

4.4.2 Influence of surface environmental stability upon macroinvertebrate distribution  

The significant positive relationship between the multivariate index of environmental 

stability and the hyporheic macroinvertebrate diversity suggests small variations in surface 

environmental stability (reflecting variations in length of flow routes), may influence the 

distributions of hyporheic taxa. The absence of a correlation between surface benthos 
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diversity and the stability index suggests environmental stability does not influence 

distribution of benthic macroinvertebrate diversity within the groundwater-fed streams of 

the fluvial terrace; the relationship between hyporheic macroinvertebrates and 

environmental stability is independent of surface macroinvertebrate diversity. At relatively 

less stable sites, the observed increase in diversity at hyporheic zones compared to the 

reduction in surface diversity might indicate a wider diversity of macroinvertebrates moving 

from the surface into the hyporheic zone; macroinvertebrates may use the hyporheic zone 

as a refuge from “substrate movement and flow variance” (Fowler and Death, 2001). The 

significantly more stable environment which was observed within the hyporheic zone 

demonstrates its potential to act as an effective refugia. The distribution of 

macroinvertebrates below the surface might therefore be attributed to a refugia response. 

However, the hyporheic zone may also be occupied more permanently, effectively being 

used as an extension of the surface habitat (Winterbourn and Wright-Stow, 2002). Here a 

reduction in stream stability may be associated with an increase in streambed porosity 

(Brunke and Gonser, 1997), thus facilitating macroinvertebrate migration between habitats. 

The relationships between absolute abundance and index of stability within benthic and 

hyporheic zones differed from those of diversity, indicating greater abundance at less stable 

sites at the surface, and a quadratic relationship within the hyporheic zone. Together with 

the macroinvertebrate diversity associations, this might indicate reduced numbers of a 

dominant species at sites of lower stability within the hyporheic zone (e.g Chironomidae). 

The use of grouped communities in the analysis of relationships can mask the movements of 

individual taxa; consequently the relationships between individual families and stream 

stability should also be examined (Palmer et al., 1995). 
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4.4.3 Effects of ecological traits upon uses of the hyporheic zone 

Contrasting distributions of taxa abundances between surface and hyporheic habitats, and 

differences between taxa in responses to environmental variables, indicate the potential for 

different uses of the hyporheic zone depending upon site characteristics, and the tolerance 

of the taxa. The divergent hyporheic and benthic macroinvertebrate distributions suggest 

that taxa within the hyporheic community may be more strongly affected by variations in 

environmental variables than by the factors determining surface macroinvertebrate 

abundance. This is potentially indicative of a refugia response (Dole-Olivier et al., 1997). 

4.4.3.1 Refugia 

The relationships between Nemouridae and channel bottom stability (as indicated by PSI) at 

both 15 and 30cm, and of the multivariate environmental stability index at 30cm, may 

indicate a refugia response to reduced stream bed stability. At sites of least stability (as 

indicated by PSI and the multivariate index of environmental stability), reductions in 

abundance observed at 15cm correspond with the establishment of Nemouridae at 30cm, 

indicative of deeper migration at sites of higher relative instability. The contrasting negative 

relationship at the surface, although not significant, might indicate movement from the 

surface to the hyporheic zone at sites of reduced environmental stability. Such responses to 

in-stream instability were observed by Fowler and Death (2001). The relationships observed 

between Empididae and multivariate environmental stability at 15cm might be attributed to 

similar processes. 

The significant positive correlations of Baetidae with DSVI and DTVI at 15cm may additionally 

indicate sensitivity to variability in temperature and stream stage. Relocation of Baetidae 
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from the surface in areas of higher temperature variability is suggested by the contrast 

between higher hyporheic abundances and lower surface abundances. The more stable 

water temperatures within the hyporheic zone would provide a more suitable habitat for 

Baetidae in relatively unstable streams, given their preference for more stable temperature 

regimes (Hose et al., 2005). The similar relationship observed between Baetidae and DSVI 

may result from higher stage variability, causing increased porosity, and facilitating 

macroinvertebrate entry into the hyporheic zone. However, the significant negative 

relationship with FPOM observed at this depth may also indicate that this taxon enter the 

hyporheic zone at sites of low food availability. When food availability is low, Baetidae 

perform more extensive searches of the surrounding habitat (Kohler, 1984), therefore higher 

abundances within the hyporheic zone may reflect increased foraging.  

The significant negative relationship between Chironomidae abundance and channel 

stability (PSI) within 15cm of the hyporheic zone, with contrasting surface and hyporheic 

abundances, might again indicate a refugia response. Uniquely, highest hyporheic 

Chironomidae abundance was observed at sites of greater surface stability. Chironomidae 

have a high tolerance for instability, but are typically poor competitors, and thus abundance 

is reduced where conditions are less extreme (Milner and Petts, 1994). Where the 

competitive ability of taxa is weak, refuge will be sought in order to facilitate its co-existence 

(aggregation theory; Ward et al., 1998), which in the case of Chironomidae may be the 

hyporheic zone at more stable sites. Owing to several behavioural and physiological traits, 

low stream permanence may strengthen the competitive ability of the Chironomidae 

(Williams and Hynes, 1976; Gray, 1981), reducing the need for the taxa to seek refuge, and 

potentially explaining the low hyporheic abundance at B2. Again the significant negative 
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relationship between FPOM and Chironomidae at 30cm might also indicate a degree of food 

searching behaviour in the taxa. At sites of lower organic availability taxa may use the 

hyporheic zone as a food resource, searching for patches of settled organic matter, deep 

within the substrate (Winterbourn and Wright-Stow, 2002). This is supported by the 

significant positive relationship with Cl- at this depth; greater FPOM concentrations may be 

entrained within the hyporheic zones of these sites, supplied by DFSdeep flow pathways 

(Boissier and Fontvieille, 1995). Hyporheic zones with greater Cl- concentrations may 

therefore be capable of sustaining greater numbers of Chironomidae.  

4.4.3.2 Surface habitat extension 

Unlike macroinvertebrates demonstrating refugia responses, distributions of Limnephilidae 

(at 30cm) and Chloroperlidae closely reflected those at the surface, which may indicate 

continual movement of taxa between the surface and the hyporheic zone. The even 

distribution between zones suggests the hyporheic zone may be used as a permanent 

extension of the surface habitat, as opposed to a temporary refuge. 

 Uniquely, surface abundance of Limnephilidae was positively correlated to PSI; hyporheic 

abundance also appears to be influenced by both PSI and organic matter, indicated by the 

quadratic relationships at 15cm and 30cm. Limnephilidae move preferentially to greater 

depths, driven by increased likelihood of encountering food resources (Winterbourn and 

Wright-Stow, 2002; Wright-Stow et al., 2006; Godbout and Hynes, 1982). Taxa typically 

display preferences for different degrees of sediment porosity (Wood and Armitage, 1997), 

and available physical space is a primary limiting variable determining hyporheic distribution 

(Maridet et al., 1992). Limnephilidae (a cased caddis) therefore requires a minimum pore 

space to move deep into the hyporheic zone. In less stable sites this space will be made 



 

145 

 

more readily available, as alterations in sediment porosity enable easier access (Brunke and 

Gonser, 1997). As a result greater abundances of Limnephilidae might be expected at less 

stable sites. However, equally, at sites of higher organic matter availability there is a reduced 

need for the taxa to migrate into the hyporheic zone in search of food. The optimum 

abundance of Limnephilidae are therefore found at sites of low organic matter and high PSI 

(B1). This may explain the quadratic nature of the relationships.  

The significant positive association between the abundance of hyporheic (15 and 30cm) and 

benthic Chloroperlidae again suggests use of the hyporheic zone as a more permanent 

habitat. Nymphs of most genera of this family remain predominantly hyporheic, rising to the 

surface as late instars, just prior to emergence (Surdick, 1985). This would explain the low 

abundances observed at the surface, and correlation between habitats, as greater larvae 

abundances within the hyporheic zone support greater abundances for emergence at the 

surface. Positive relations between Chloroperlidae and DSVI at 30cm might be explained by 

greater stage variance driving early instar Chloroperlidae to greater depths to reach suitable 

habitat stability. Alternatively, the negative association with FPOM might suggest that 

Chloroperlidae move deeper into the hyporheic zone in search of food, at sites of low 

resource availability.  

This study suggests, therefore, that in the case of several taxa examined, differences 

between groundwater-fed streams in degree of variability in environmental stability, and in 

additional physicochemical variables, were sufficient to result in significant differences in 

their abundance within the hyporheic zone. 
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4.5 Conclusion 

The results demonstrate that within a relatively small fluvial terrace, the environmental 

stability of groundwater-fed streams may vary sufficiently to produce clear differences in 

macroinvertebrate communities and in the response of individual taxa. Differences between 

streams in environmental stability, created predominantly by local variability in groundwater 

residence times within subsurface flow routes, were demonstrated as a significant driver of 

macroinvertebrate distribution at a community scale. However on a taxa-specific level 

several additional physicochemical variables proved influential. 

The results highlighted two potential uses of the hyporheic zone. Firstly it was used as a 

refuge from relatively small variations in the surface stream environment (environmental 

stability), and a suite of physicochemical variables, at ranges found less favourable by 

specific taxa – Chironomidae, Nemouridae, Empididae and Baetidae. Chironomidae, 

Nemouridae and Baetidae may have additionally used the hyporheic zone as a food resource 

at sites of reduced surface organic matter availability, or in areas where subsurface organic 

matter content was higher. Secondly, the hyporheic zone may be used as a more permanent 

extension of the surface habitat – by Limnephilidae and Chloroperlidae.  

The study demonstrates that local scale variability can be of sufficient magnitude to elicit 

responses in taxa in subarctic environments, perhaps because here taxa may live close to 

their tolerance levels, or due to a scarcity of resources. 
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5. DETERMINATION OF GROUNDWATER UPWELLING SITES 

USING REMOTE SENSING OF LANDSAT DATA 

A method for identifying sites of upwelling groundwater, using digital remote sensing, was 

developed, in order to quantify the spatial extent of groundwater-fed streams within two 

National Parks, in Alaska. This larger spatial scale provides a better depiction of the overall 

distribution of points of groundwater upwelling, both within and between glacial floodplains. 

Chromaticity valuations were used to create a relative normalised index of turbidity, to 

isolate the glacial floodplains of both Denali and Wrangell St Elias National Park. 

Subsequently a normalised vegetation index is calculated, highlighting areas of high 

chlorophyll concentration within the floodplains. The ‘hotspots’ of chlorophyll were 

compared with higher resolution imagery, to determine the accuracy of site classifications. 

It was determined that 30m resolution Landsat TM and ETM data can be used to accurately 

determine areas of groundwater upwelling within glacierised floodplains. This methodology 

will enable detailed comparative studies to take place between sites of groundwater 

upwelling, which might otherwise have been prevented due to the difficulties experienced in 

identifying suitable study sites. 
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5.1 Introduction 

Areas of upwelling groundwater have been identified as key macroinvertebrate community 

drivers within glacierised systems (Brown et al., 2003). Groundwater-fed streams typically 

demonstrate higher taxa abundance and diversity compared to glacial rivers, due to the 

greater water clarity and physical channel stability of the upwellings (Ward et al., 1999). 

Additionally, greater nutrient concentrations may be supplied to macroinvertebrate 

communities where upwellings are fed by shallow groundwater flow (Coleman and Dahm, 

1990).  Macroinvertebrate diversity may, however, be significantly influenced by climate 

change, and associated glacial recession, as relative contributions of groundwater are 

eventually increased (Milner et al., 2009). Knowledge of the key habitats of 

macroinvertebrates is therefore crucial to the understanding and monitoring of glacierised 

riverine ecosystems, not only because given their sensitivity to change macroinvertebrates 

may be used as an indicator of climate change (Brown et al., 2007), but also as they play key 

roles in ecosystem functioning (Cummins and Klug, 1979; Lessard and Hayes, 2003) and 

nutrient cycling (Merrit et al., 1984).  

Arctic and alpine catchments are relatively little studied, reflecting their remote locations 

and relative inaccessibility (Tockner et al., 2002). Therefore, despite the importance of 

groundwater upwellings, these freshwater ecosystems have not been extensively researched 

in subarctic environments. Large scale studies, comparing sites between several glacierised 

catchments are rare; one limitation has been the difficulty in locating suitable study sites. If 

limited to ground reconnaissance, identification of upwelling sites is laborious and costly due 

to the size of glacierised catchments, which are typically located in remote areas. A site 
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identification method is therefore required which will optimise resource use and establish a 

broader understanding of groundwater upwelling dynamics. 

Areas characterised by upwelling groundwater are typically associated with isolated sites of 

dense vegetation (Hayashi and Rosenberry, 2001) which contrast markedly with the non-

vegetated active glacial floodplain (Zah and Uehlinger, 2001; Uehlinger et al., 2003). This 

occurs whereby metabolism by nitrifying bacteria within groundwater flow pathways (Jones 

et al., 1995; Dahm et al., 1998) results in elevated nitrate and phosphate concentrations at 

sites of groundwater discharge (Valett et al, 1994; Dent et al., 2000). The nutrients are 

conveyed to both the stream and riparian zone through subsurface flow pathways extending 

from the active channel (Harner and Stanford, 2003), and in combination with reduced flow 

variability (resulting in greater bank stability) both algal and riparian vegetation growth are 

increased. Although the 30m resolution of the Landsat remote sensing images preclude the 

identification of individual groundwater channels within the floodplains, extensive vegetated 

areas growing within and between groundwater upwelling channels may be depicted on a 

larger scale. 

Through the use of freely available satellite imagery therefore, sites of groundwater 

upwelling may be identified remotely; this would significantly reduce resource expenditure, 

enable larger scale comparative studies between upwellings sites, and establish the full 

extent and significance of these habitats.  

This study therefore aims to  

1. develop a methodology of identifying groundwater upwellings, using digital remote 

sensing; 
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2. assess the accuracy of the methodology; and 

3. determine the extent of groundwater upwellings within Denali National Park, and 

compare the results with those of the adjacent National Park, Wrangell St Elias.  

5.2 Methodology 

5.2.1 Study sites 

Two areas within interior Alaska were identified for study, each was ~ 200,000km2. The first 

comprised a region in and around Denali National Park and Preserve (Fig. 36), and the 

second, Wrangell St Elias National Park and Preserve.  

 

 

 

 

 

 

 

 

 

 

Figure 36: Locations of study sites for digital remote sensing data acquisition 
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Both areas are characterised by extensive glacierised floodplains, with additional snow-melt, 

rainfall and groundwater stream sources (Thorson and Bender, 1985; Anderson et al., 2003). 

Denali was selected as a control site, which could be used to determine model accuracy, 

based upon existing knowledge of groundwater upwelling locations. The replicative potential 

of remote sensing techniques was assessed by applying the method to the Wrangell St Elias 

dataset. 

 5.2.2 Data collection 

Landsat images (30m resolution) were selected from the NASA Landsat orthorectified 

database, and each band downloaded as a separate image (.tif file); only the first five bands 

of the spectrum (blue, green, red, near infra red and far infrared) were required for the 

study. As each Landsat image measures ~34,000km2, and images overlap by ~ 60%, six 

images were required to create each National Park scene. The majority of the image data 

was acquired from Landsat 5 TM and Landsat 7 ETM satellites covering the period 2000 to 

2002. Although images within these scenes span a wide range of dates and satellite models, 

they represent the most recent Landsat images of highest quality (lowest cloud cover, with 

least pixel damage, taken during the growing season), as outlined in the orthorectification 

procedure used by NASA (Tucker et al., 2004). The high quality of this data reduces the need 

for atmospheric adjustments. Although more recent images are available, high cloud cover, 

data errors or data acquisition outside of the growing season (May-September) precluded 

them from study.  
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5.2.3 Data analysis - digital image processing 

Although orthorectification of data provided by NASA resulted in similar atmospheric quality 

of images, several factors may create differences between images, and thus some degree of 

image processing is required. Remotely sensed data within each image band is provided as a 

series of rescaled radiance values (1-255); dissimilarities between images in sun angle and 

intensity, satellite angle, and satellite model may significantly alter these values. These 

differences were removed via a series of image corrections applied to each image band. 

Image processing was conducted using raster calculator in ArcMap 9.3. First, image data 

values were converted from model-specific radiance values (Qcal) taken by either Landsat 5 

TM or Landsat 7 ETM, into at-sensor spectral radiance (Lλ), a common radiometric scale 

(Chander et al., 2009). The following conversion was performed, as outlined by the Landsat 

Project Science Office (2002), using constants provided in Chander et al., (2009).  

  


 LMINQQ
QQ

LMAXLMIN
L calcal

calcal





 min

minmax

     8 

Where 

Lλ = common radiometric scale 

LMAXλ = maximum rescaled at sensor radiance value   

LMINλ = minimum rescaled at sensor radiance value  

Qcal  = original model-specific radiance value  

Qcalmin = minimum calibrated pixel value of satellite ( = 1 for Landsat 5 and 7) 

Qcalmax = maximum calibrated pixel value of satellite (= 255 for Landsat 5 and 7) 

 

Next, to reduce variability resulting from differences in the date of Landsat image 

acquisition, at-sensor spectral radiance was converted to in-planetary albedo (TOA 

reflectance) using the equation given by Markam and Barker (1986) (below). This accounts 
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for differences in sun angle, variation in distance between the sun and the earth, and in 

exoatmospheric solar irradiance arising from different spectral bands in relatively clear 

images (Chander et al., 2009; Landsat Project Science Office, 2002).  

TOAreflectance = ∏. Lλ.d
2      

                   ESUNλ . cosØS         9 

Where  

∏ = 3.142  

Lλ  = at-sensor spectral radiance  

d = distance from the earth to the sun  

ESUN λ = mean solar exoatmospheric irradiance  

ØS = Solar zenith angle (degrees) 

All values (except ∏ and Lλ) are sensor, band or date specific, and again are summarised in 

Chander et al., (2009).  

To identify groundwater-fed streams in glacierised floodplains, a measure of chromaticity 

was used, which identifies differences in water clarity (Bukata et al., 2001). However the 

narrow channel width of many groundwater-fed streams, and coarse resolution of the 

Landsat dataset (30m) prevented direct identification of the upwellings within glacial 

floodplains. Therefore a two-step process was used, first a conversion from TOAreflectance to 

the chromaticity measure was undertaken, to identify and remove larger non-glacial rivers 

and lakes from the Landsat scenes. Second, an NDVI was created to identify characteristic 

areas of high chlorophyll concentration within the remaining glacial floodplains, maintained 

by the high nutrient contents and stability of groundwater upwellings.  
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5.2.3.1 Relative normalised turbidity index 

The colour of a water body is a result of interactions between downwelling solar irradiance 

and upwelling light reflectance of organic and inorganic compounds within that water 

(Jerome et al., 1994). Chromaticity measurements, adapted by Alföldi and Munday (1978) 

from the CIE 1931 measurements, may therefore be used as remote sensing indicators of 

water clarity. This transformation involves a brightness normalisation (Mouchot et al., 1991) 

of corrected TOAreflectance bands 2, 3 and 4 (green, red and near infra red): 

Chromaticity X = band2/(band2+band3+band4)      10 

Chromaticity Y = band3/(band2+band3+band4)      11 

Chromaticity Z = band4/(band2+band3+band4)      12 

These values may be plotted as coordinates in a ‘chromaticity triangle’ (Lindell et al., 1986). 

However as strong positive correlations have been established between the Chromaticity X 

value and degrees of water clarity (Mouchot et al., 1991), Chromaticity X may be used as an 

indicator of turbidity (lower values indicate higher turbidity). Given that the aim of the 

method is to establish potential field sites with minimal resource expenditure, ground-

truthing of turbidity data was not undertaken. As a result, the chromaticity values were not 

calibrated indicators of turbidity, but represent a relative normalised turbidity index.  

Following the determination of turbidity (or chromaticity), further corrections for 

atmospheric haze are often undertaken (Lindell et al., 1986). An assessment of between-

image variance in chromaticity determined the level of accuracy to be within 2%. Correction 

for atmospheric haze is a time consuming process, and given the existing high accuracy level 

(low between-image variance), and the low resolution required to separate between the 

extremes of turbid and clear streams, this step was not considered necessary.  
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Two separate scenes were subsequently created, consisting of a mosaic of all turbidity 

images within each park. Snow and glacial ice were removed from each scene using the 

methods described by Dozier (1989). A snow mask was created, consisting of three layers; 

the first depicted bright snow, the second separated shaded snow from bright soil and rocks, 

and the third separated snow from cloud. TM band 1 saturates over bright snow and ice, 

thus displaying very low TOAreflectance values (Rosenthal and Dozier, 1996); at a threshold 

value (≤0.2) this is considered snow (Dozier, 1989). Shaded snow was distinguished from 

bright soil and rocks using the algorithm: 

(Band2 – Band5) / (Band2 + Band5)        13 

again using a threshold value (≤0.4) to create a second binary snow mask. Finally band 5 was 

used to separate snow from cloud with the threshold value of ≥0.25. A composite mask of all 

three criteria was created for each image, and a mosaic of the mask created for each park 

scene. Once applied as a ‘snow mask’ onto existing park turbidity scenes this successfully 

removed the majority of snow and ice from the datasets. 

To identify and extract rivers from the dataset for further analysis, the use of bands 5 and 7 

was considered, but due to the high TOAreflectance of the turbid glacial streams, this method 

was not appropriate. Density slicing of band 5 was also considered. However TOAreflectance 

values of glacial streams in the higher turbidity range, and some land classifications 

significantly overlapped. As a result several steps were taken. First the turbidity index was 

used to separate the majority of rivers from streams; the lower 10th percentile of values 

were removed, this was successful in removing terrestrial components of both scenes, and 

general background ‘noise’. Secondly, to remove large groundwater streams and lakes, the 
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upper 90th percentile of turbidity values were identified and removed. Some rhithral streams 

remained; such streams could not easily be removed due to their high turbidity.  

The removal of terrestrial components of the scenes also removed all mid-channel bars, and 

significant central portions of glacial floodplains. Such areas may contain upwelling hotspots, 

and were therefore required in the analysis. To re-introduce missing floodplain sections, 

with minimal time expenditure, a terrestrial vector mask was created. Using the glacial 

stream file as a mask, raster calculator was used to identify all non-glacial scene 

components. The resultant raster image was converted into a vector. All ‘missing’ areas of 

glacial floodplains and mid-channel bars had been surrounded by the extracted glacial rivers, 

and were therefore isolated vector shapes. As a result, by deleting the largest vectors within 

the two scenes (five or six shapes in each case) only the isolated vectors of interest 

remained. This vector file was then converted back to a raster, and used as a mask on the 

original (snow-free) turbidity index scene. This created, for both study areas, a scene 

consisting of sections of floodplains and mid-channel bars. These scenes were then mosaiced 

with the relevant glacial river scenes, creating park scenes of complete glacierised 

floodplains.  

Finally partial density slicing of band 5 TOAreflectance values was undertaken. Using histograms 

within ERDAS imagine, the TOAreflectance value in band 5 which represented land values 

significantly different to those of rivers could be determined. All values above this point 

were removed. This was then applied to the park scenes of complete glacierised floodplains 

as a ‘cleanup’ operation. In isolation this method left significant portions of land. However in 

combination with river extraction through turbidity values, and snow and ice removal, it 
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isolated additional land pixels, which could be subsequently removed, thus reducing model 

error. 

The accuracy of the model in determining glacial floodplains was then assessed, using a 

percentage accuracy of pixel classification method, adapted from Ward et al., (2000). 

Assessment sites were chosen using a random number generator to depict coordinates 

within the park scenes, which were then used as centroids for 800 square pixel areas. An 

RGB colour composite image, or where available, a digital satellite photograph were 

superimposed upon the model, and the accuracy of classification of each pixel value within 

the assessment grid square (glacial or non-glacial) determined. 

5.2.3.2 Normalised vegetation index 

Using TOAreflectance corrected bands 3 and 4, a mosaic of normalised vegetation indices was 

created for each park scene. NDVIs were calculated for each individual image within the 

scene using the formula  

NDVI = band3 - band4 

             band3 + band4         14 

An NDVI representative of only areas within glacierised floodplains was created by masking 

the mosaic NDVI of each park scene with the glacierised floodplain scene, using the floating 

point operation in raster calculator. NDVI returns a value of between 1 and -1, with positive 

values indicating the presence of vegetation (Zhou et al., 2001; Weiss et al., 2004). Upwelling 

areas were therefore identified as isolated areas of positive NDVI values. NDVI values at 

hotspot locations previously identified in ground reconnaissance surveys within Denali 

National Park were recorded. Additionally, the overall accuracy of hotspot identification by 
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the model was assessed using high resolution aerial photography of the sites; coordinates of 

each upwelling were obtained from the model and entered into Google Earth (25cm 

resolution) whereby the presence or absence of upwelling channels was confirmed.  

5.3 Results and discussion 

Model classification accuracy distinguishing between glacial floodplain and non-glacial 

floodplain pixels (Table 7) was determined at 94.3% for Denali National Park, and 87.8% for 

Wrangell St Elias National Park, using a methodology adapted from Ward et al (2000). The 

majority of misclassification in both datasets arose from misclassification of snow or ice as 

glacial floodplains; percentage accuracy of Wrangell St Elias was reduced by the higher 

percentage coverage of glaciers within the study area.  

 

Table 7: Assessment of land cover accuracy with respect to glacial stream data extraction using relative 

normalised turbidity index 

Within the National Park and Preserve of both Denali and Wrangell St Elias, 12 and 15 areas 

of upwelling groundwater were identified respectively, consisting of uncharacteristically high 

chlorophyll concentrations within otherwise barren glacierised floodplains. The most notable 

upwelling hotspots were on the East Fork of the Toklat River (Fig. 37) and the main Toklat 

River (Fig. 38) in the Denali National Park dataset, and on the Gakona River (Fig. 39) and the 

White River (Fig. 40) in the Wrangell St Elias dataset, all of which had NDVI scores greater 

than 0.4. 

Scene Number 
of test 
sites 

Pixels in 
test site 
images 

Misclassified % accuracy % Land cover class of misclassification 

     Snow/ice Land Snow-melt stream 

Denali 13 10400 594 94.3 68 23 9 
Wrangell 
St Elias 

13 10400 1270 87.8 94 4 2 
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Fig. 38: Groundwater upwelling on the main Toklat River; assessment of model accuracy using (Ai) GeoEye satellite 

imagery from Google Earth (25cm resolution) and (Aii) ground truthing from site visitation 

Fig. 37: Sites of groundwater upwelling on the East Fork of the Toklat River; assessment of model accuracy using 

GeoEye satellite imagery from Google Earth (25cm resolution) 
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Fig. 40: Upwelling hotspots proximal to glacial headwaters of the White River, upstream of Canyon Mill; 

tributary to the Yukon. Assessment of model accuracy using Terrametrics satellite imagery (Google Earth) (15m 

resolution) 

 

Fig. 39: Groundwater upwelling on the Gakona River; assessment of model accuracy using GeoEye 

satellite imagery from Google earth (25cm resolution) 
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Total potential study areas for Denali and Wrangell St Elias were calculated at ~13,044m2 

and ~15,176m2 respectively. The presence of all upwellings at identified hotspots was 

confirmed through the use of Google Earth imagery, which depicted the emergence of small 

clear water channels within or in close proximity to the glacial floodplains (Fig. 37A-40B). 

Furthermore upwelling areas previously identified by ground surveying studies within Denali 

National park were successfully identified by the remote sensing methodology; these include 

the East Fork of the Toklat River, the fluvial terrace of the main Toklat river (Fig. 38 Aii), and 

McKinley Bar.  

This study demonstrates that remote sensing can be used to identify areas of groundwater 

upwelling on glacierised floodplains. The confirmation of the existence of several of the 

upwelling sites by ground reconnaissance and photographic images supports its use as a 

precursor to ground surveys, focusing resources in a more economical manner. The high 

percentage accuracy of the model in both scenes indicates that the risk of overestimating 

glacierised habitat, predominantly to include snow and ice accumulations, is acceptable. The 

characteristics of glaciers or snow topped mountains differ significantly to those of glacial 

streams and may easily be identified within the Landsat images and ignored. Additionally, 

the areas of snow and ice have no vegetation, and are therefore not subsequently identified 

within the model as upwelling hotspots. The potential to mistake an area covered by 

perennial ice as an area of upwelling groundwater is therefore minimal.  

Further ground truthing of the methodology would confirm the predictive ability of the 

model. The knowledge of existing hotspots proved the predictive power of the NDVI in 

determining upwellings within glacial floodplains, and comparisons with higher resolution 

imagery suggests additional areas of high NDVI scores were accurately identified as 



 

169 

 

upwelling areas. However site visitation would eliminate the possibility of overestimation of 

groundwater upwellings. Regardless of possible overpredictive characteristics of the model, 

this method successfully focuses resources upon a reduced number of study areas, by the 

isolation of 12 and 15 potential hotspots within two 200,000km2 areas.   

Although upwellings smaller than 30m2 may be overlooked due to the 30m resolution of 

Landsat TM and ETM data, the technique identifies the largest and potentially therefore the 

most ecologically significant upwelling hotspots in glacierised catchments in both study 

areas. Additionally, the modelling technique could prove invaluable as finer resolution 

images, obtained through private satellite imaging companies, become more widely 

available. 

The repeatability of the methodology, demonstrated by the high accuracy upon application 

of identical methods upon both Denali National Park and Wrangell St Elias datasets, suggests 

that remote sensing methods may be used successfully in many glacierised catchments. 

Othorectified Landsat images are now freely available for all areas (excluding Antarctica), 

and thus the potential for use of this methodology throughout arctic and subarctic 

catchments is economically less restrictive than costly and time consuming ground surveying 

techniques. 

The large numbers of upwellings, covering a total of 28,221m2, identified in Denali and 

Wrangell St Elias National Parks illustrates the frequency with which these habitats occur 

within subarctic catchments, and highlights the need for further study into these unique 

environments. Comparisons of upwelling systems within and between catchments could 

prove valuable to the understanding of habitat systems. With the use of remote sensing 

techniques, identification of suitable study sites will become more economically viable.                                                                                                                                                                                                 
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5.4 Conclusion 

The use of remote sensing to identify sites of groundwater upwelling within glacierised 

catchments proved highly successful. This method presents a viable alternative to extensive 

field reconnaissance, demonstrating 94% accuracy in identifying glacierisied catchments, and 

100% accuracy in determining upwelling areas, within Denali National Park. The repetition of 

the methodology, although marginally less accurate, at 83%, remained highly effective. 

Areas predominantly misclassified as glacial floodplains (snow and ice) were not 

subsequently misclassified as upwelling hotspots, and as a result the variation in model 

accuracy is not a cause for concern; in both instances all upwelling hotspots identified by the 

model were subsequently confirmed as sites of groundwater upwelling. This method 

substantially reduces problems in site identification of remote areas, and provides a step 

forward for studies of groundwater upwellings in glacierised catchments.  
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CONCLUSION 

A synopsis of the research findings are presented and wider implications discussed. Finally 

possibilities for further research are suggested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

176 

 

6.1 Introduction  

The aim of the research was to determine how physicochemical dynamics of groundwater 

flow influence macroinvertebrate communities within a glacierised catchment. Specific 

objectives were to:  

1) characterise the physicochemical characteristics of groundwater flow pathways 

within the fluvial terrace, and determine the degree of local variability in 

environmental stability; 

2) determine the influence of variability in groundwater flow dynamics upon the 

benthic and hyporheic macroinvertebrate community; and 

3) develop a methodology of groundwater upwelling site identification through remote 

sensing, in order to put the results of the study into context, and to facilitate future 

research within glacierised catchments. 

This study addressed research gaps in the effects of groundwater channels on 

macroinvertebrate communities within glacierised catchments, by investigating the 

influence of local physicochemical variability in groundwater-fed streams, reflecting 

dynamics of groundwater flow. Research was conducted upon several streams, fed solely by 

groundwater, situated upon a fluvial terrace, within the Toklat River floodplain; a subarctic 

glacierised catchment within interior Alaska. The research established a better 

understanding of ecohydrological interactions within glacierised catchments, in benthic and 

hyporheic zones, and analysed the geographical extent of these habitats, addressing wider 

issues of site location within remote areas.  
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6.2 Local groundwater flow dynamics: physicochemistry and environmental stability   

The natural tracers 18O and Cl- indicated that water followed three distinct subsurface flow 

pathways to supply the groundwater-fed streams; deep and shallow flow through a debris 

fan (DFSdeep and DFSshallow,) and glacial meltwater seepage (GMWriv seepage).  Marked local 

spatial and temporal variations were determined in the physicochemistry of the 

groundwater-fed streams, reflecting variability in the proportional contribution of waters 

derived from these distinct pathways. During June, the concentration of fine particulate 

organic matter (FPOM) was significantly higher at sites receiving greater contributions from 

DFSdeep. However, this relationship was not found in subsequent months following 

establishment of streamside vegetation (July) and leaf litter fall (August). Spatial variations in 

contributions from individual flow pathways to groundwater-fed streams were attributed 

both to local topography (vertical distance from the water table) and proximity to the flow 

pathway. Perennial streams, situated proximal to the valley-sides and at lower elevations 

received baseflow from DFSdeep; ephemeral streams derived a greater proportion of flow 

from GMWriv seepage. Proportional contributions between flow pathways also varied 

temporally, both as a result of rainfall and seasonal variability in snow and ice-melt.  

Nested flow routes, of varying length and residence time were determined within each 

individual flow pathway. Marked differences were observed between sites in diurnal stage 

and temperature variation indices (DSVI and DTVI), independent of the dominant flow 

pathway (e.g Hoehn and Cirpka, 2006). Differences in DSVI and DTVI likely reflect local 

variations in attenuation of flow and temperature regimes, suggesting the length of flow 

route within a single pathway is highly variable. Hydrogeologic facies are locally variable 

(Robinson et al., 2008), reflecting fluctuating sediment supplies and flow regimes during unit 
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formation (Smith, 1985). As flow route length and hence residence time reflects the 

distribution and connectivity of permeable deposits (Ward et al., 2002) (as illustrated in Fig. 

2) this would explain the local variability in regime attenuation. Reduced attenuation of flow 

may affect substrate stability, increase bedload transport and disrupt bed sediment (Milner 

et al., 2001), which would account for the higher Pfankuch Index of stability (PSI), 

Macroscale channel stability (MSS) and sediment size (D50) observed within channels of less 

attenuated flow regimes. Accordingly, the multivariate index of environmental stability, 

combining individual measures of local variability (DSVI and DTVI, PSI, MSS and D50), 

demonstrated higher variability in channels with reduced regime attenuation.    

Seasonal flow maxima, physicochemistry and organic matter concentrations were closely 

related to relative contributions from water sources and flow pathways from the valley sides 

and the main glacial meltwater channel of the Toklat River. However, variability in channel 

stability between sites was primarily determined by flow regime attenuation, reflecting flow 

route lengths and groundwater residence time, which was dependent upon local substrate 

permeability and connectivity. This varied independently of relative contributions from the 

major flow pathways.  

6.3 Influence of local flow pathway variability upon benthic and hyporheic 

macroinvertebrates 

Over the summer of 2008, the influence of local variability both between groundwater flow 

pathways and in environmental stability upon macroinvertebrate communities was 

determined, through correlating abundance and diversity of macroinvertebrates, sampled 

simultaneously with physical variables throughout the study period.  
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6.3.1 Benthic macroinvertebrate communities  

Macroinvertebrate abundance and diversity within groundwater upwellings has been 

recognised as being significantly higher than those within alternative water sources (Friberg 

et al., 2001; Brown et al., 2006). However, previous research has not fully explored the 

ecological significance of the heterogeneous nature of groundwater-fed systems. Links 

between marked local variability in the physicochemical composition of groundwater 

streams (Malard et al., 1999; Ward et al., 1999) and macroinvertebrate community 

distributions, although acknowledged (Turnbull et al., 1995; Soulsby et al., 1997), had not 

previously been established. Results presented in Chapters 2 and 3 provide significant 

correlations between variability in physicochemical composition of groundwater-fed 

streams, and macroinvertebrate community composition, establishing that groundwater-fed 

streams vary in their capacity to sustain higher macroinvertebrate abundance and diversity. 

The results suggested that water flow pathways are a key driving factor in benthic 

macroinvertebrate community structure on this fluvial terrace. The influence of flow 

pathways upon macroinvertebrate abundance varied depending upon traits and tolerance of 

taxa, and occurred primarily during periods of low resource availability. During June FPOM 

was predominantly supplied by the DFSdeep flow pathway, and correlations were observed 

between taxa, FPOM and flow pathway relative contribution (DFSdeep%). However when 

alternative sources of organic matter became available in subsequent months, correlations 

were no longer observed between taxa and flow pathways, as DFSdeep seepage ceased to be 

the predominant source of organic matter to the groundwater-fed streams. Correlations 

observed between taxa, CPOM and distance downstream likely demonstrate resource 

tracking. However following the increases in organic matter availability, only perennial 
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streams, deriving a greater proportion of streamflow from DFSdeep, supported associated 

increases in macroinvertebrate diversity. Ephemeral streams, fed by GMWriv seepage, had 

significantly lower macroinvertebrate diversity throughout this period. This was potentially 

due to colonisation and resource tracking constraints faced by univoltine taxa in ephemeral 

streams.  

Glacial recession will likely lead to an elevated contribution of groundwater to streamflow in 

many glacierised catchments, and have significant implications for macroinvertebrate 

abundance and diversity (Ward et al., 1999; Brown et al., 2007). However, these results 

indicate that the influence of groundwater, and thus of climate change, upon 

macroinvertebrate communities, may be more dynamic than previously envisaged. The 

significance of an increase in the relative contribution of groundwater to glacierised 

catchments resulting from glacial recession may vary depending upon water sources and 

flow pathways. 

6.3.2 Hyporheic macroinvertebrate communities  

Variability in environmental conditions has been identified as a driver of macroinvertebrate 

movement into the hyporheic zone (Death and Winterbourn, 1995; Boulton et al., 1998; 

Fowler and Death, 2001). However, the potential influence of differences in flow pathways 

and local variations in flow route residence time, inducing local variability in physicochemical 

variables between groundwater-fed streams, has not previously been determined. In this 

context, the results presented in this thesis demonstrated that surface environments of 

groundwater-fed streams varied sufficiently to produce clear differences in hyporheic 

macroinvertebrate communities. Unlike the distribution of surface macroinvertebrate 

diversity however, the predominant driver of hyporheic macroinvertebrate distribution on a 
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community level was not organic matter, and hence the relative contribution to flow of the 

three flow pathways (DFSdeep, DFSshallow and GWMriv seepage) was not a significant influence. 

Macroinvertebrate diversity within the hyporheic zone was predominantly related to 

environmental stability, increasing in diversity with reductions in stability (as indicated by 

the multivariate index of environmental stability). Local differences in stability between 

streams likely reflect variability in flow route residence time. Individual taxa demonstrated 

relationships with several additional physicochemical variables.  

Two potential uses of the hyporheic zone were highlighted in Chapter 4. Firstly, it was used 

as a refuge (Palmer et al. 1992; Cooling and Boulton, 1993; Dole-Oliver et al. 1997), where 

the hyporheic abundance of specific taxa demonstrated contrasting distribution to that of 

surface macroinvertebrate abundance. This may suggest macroinvertebrates relocated from 

the surface at sites of unfavourable conditions, such as high daily variability of temperature 

and flow, lower channel stability or low availability of food. Secondly, the hyporheic zone 

may have been used as a more permanent extension of the surface habitat (Surdick, 1985; 

Winterbourn and Wright-Stow, 2002) where distributions of macroinvertebrate abundance 

were similar both within the hyporheic zone and at the surface. Some taxa were identified as 

utilising sites of greater pore space (created through reduced stream bottom stability) as 

access to food resources within the hyporheic zone. Other taxa were phenologically adapted 

to spend the majority of their nymphal stage within the hyporheic zone.  

Thus, the results indicate that local differences in environmental stability and additional 

physicochemical variables between groundwater-fed streams were sufficient to induce 

differences in macroinvertebrate distribution throughout the hyporheic zone. 
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6.3.3 Summary 

Benthic and hyporheic macroinvertebrate community structure was influenced by different 

aspects of in-stream physicochemical heterogeneity created by groundwater flow dynamics 

(Fig. 41).  Distribution of abundance of benthic macroinvertebrates (Fig. 41A) was primarily 

associated with organic matter availability, and diversity with length of active channel flow; 

both factors were influenced by local variability between flow pathways supplying 

groundwater to the surface streams. 

 

 

 

 

 

 

 

 

 

 

 

 

Conversely, within the hyporheic zone (Fig. 41B), macroinvertebrates were influenced not by 

Fig. 41: Conceptual summary of the influence of groundwater flow dynamics upon benthic and hyporheic 

macroinvertebrate communities 
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variation between flow pathways, but by nested routes of flow. Diversity was greatest at 

sites of lower environmental stability, likely resulting from differences between streams in 

residence time of flow routes. Most taxa within the hyporheic zone responded to surface 

variability in stream stage, temperature or PSI. 

As groundwater characteristics vary to such an extent over a relatively small scale, 

groundwater should not be treated as a generic influence upon macroinvertebrate 

communities. Effects upon benthic and hyporheic macroinvertebrate communities should be 

considered as spatially and temporally dynamic, reflecting variability in water sources and 

flow pathways, and associated physicochemical attributes.  

6.4 Methodology for remote identification of upwelling groundwater  

To determine the extent of groundwater-fed streams within Denali National Park, and the 

potential for further research, a method of site identification using digital remote sensing 

was developed in Chapter 5, using LANDSAT images. Within glacierised catchments in Denali 

National Park, an area of ~13,044m2 was found to contain upwelling groundwater, at 12 

individual sites. The existence of upwellings at identified hotspots was confirmed through 

subsequent use of high resolution (0.5m) Google Earth imagery, which depicted the 

emergence of small clear water channels within the glacial floodplains. The model was highly 

successful, with a 94.3% accuracy of glacierised catchment detection, and a subsequent 

100% accuracy of identification of upwelling areas. This method substantially reduces 

problems of in-situ identification of remote areas, and provides a step forward for studies of 

groundwater upwellings in glacierised catchments.  

The model was also applied using images from Wrangel St Elias National Park, to 

demonstrate the repeatability of the method. Here accuracy was slightly lower, at 87.8% for 
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catchment identification, likely due to the higher percentage ice cover of the area. However, 

again subsequent accuracy of hotspot identification was 100%. Fifteen sites of upwelling 

were identified within this park, with a total area of ~ 15,176m2. This large number of 

upwellings, covering such a large spatial extent, illustrates the frequency of occurrence of 

these habitats within subarctic catchments, highlighting the need for further study. With the 

use of remote sensing techniques, identification of potential study sites will become 

economically viable, and comparisons of upwelling systems within and between catchments 

may be undertaken. This is essential to the understanding of these habitat systems. 

 6.5 Wider implications and future research 

The results of this research have implications for climate change impact studies. Previous 

predictions (Brown et al., 2007; Milner et al., 2009) suggested reductions in glacial 

meltwater supplies, resulting from climate change-induced glacial recession, would increase 

macroinvertebrate diversity of streams receiving groundwater flow. However we suggest 

that the impacts upon macroinvertebrate communities of groundwater-fed streams will be 

highly localised; communities within streams fed solely by glacial meltwater seepage 

demonstrate a high potential vulnerability to glacial recession, especially when considering 

their relatively low macroinvertebrate diversity. Perennial streams fed by groundwaters 

from snowmelt and rainfall could be more resilient to climate change; here 

macroinvertebrate diversity may increase, as the reductions in glacial meltwater results in a 

relative increase in contributions from perennial sources (Brown et al., 2007). However as 

additional characteristics of groundwater (e.g. organic matter content) vary to such a 

marked extent over a relatively small scale, influences of glacial recession will be complex. 

Groundwater should therefore be regarded as having a dynamic influence upon 
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macroinvertebrate communities. These habitats are clearly important in Alaska, when 

considering their geographical extent, as indicated by remote sensing.  

Future research should include the incorporation of additional sites of upwelling 

groundwater, as identified by digital remote sensing, to scale up the investigation and 

provide further replications. Comparisons of hydroecological relationships occurring at 

other, similar study sites, would substantiate that the trends observed in data collected from 

the Toklat River catchment could be more widely applied to additional systems. This 

research should be applied to regions outside of Alaska, and of North America, to assess 

possible wider reaching and long term implications resulting from climate change. 

In addition, as the relationships between abundance of benthic macroinvertebrates and flow 

pathways occurred predominantly during periods of resource depletion, sampling of all 

physicochemical variables during winter should be carried out. Through inter-annual studies, 

the temporal extent of this depletion and thus of the dependence of taxa upon resources 

supplied by flow pathways might be established. Currently, due to the difficult 

environmental conditions, inter-annual variability of subarctic taxa (e.g. Cowan and Oswood, 

1984) is not well known. Here digital remote sensing might be used to identify suitable study 

sites which can be accessed throughout the year.  

Further research might look to incorporate organic matter tracing through the use of 

fluorescence or absorbance spectroscopy. Although the major source of organic matter to 

the catchment in June 2008 was determined to be the DFSdeep pathway, the sources of these 

organic contributions were not directly traced. Fluorescence and absorbance spectroscopy 

might be used to optically determine the various sources of dissolved organic matter (DOM) 

(McKnight et al., 2001; Baker and Spencer, 2004). This would provide greater insights into 
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the spatial and temporal availability (sources and sinks) of organic resources available to 

macroinvertebrate communities.  

The source of seasonal increases in in-stream organic matter might be determined through 

the use of isotopic tracers, such as 13C and 15N (McKnight et al., 2003). Dissolved organic 

carbon (DOC) fractions within DOM may demonstrate distinct 13C values, particular to the 

source (Schiff et al., 1990). Similarly characteristic 15N values of dissolved organic nitrogen 

(DON) may be determined (Gebauer and Schulze, 1991; Sebestyen et al., 2008), although 

microbial processes may influence these values (McKnight et al., 2003) and must also be 

considered.  

Finally, more extensive hydrological models might be created through the daily sampling of 

isotopic and chemical groundwater-fed streams and predominant flow pathways (DFSdeep 

and GMWriv), in addition to all rainfall events. Spatial and temporal variability in relative 

percentage contribution of every flow pathway to the groundwater-fed streams might be 

calculated if hourly sampling of groundwater-fed streams during and following rainfall 

events were undertaken, as this would provide additional information on the rate of flow 

transmission through the temporary pathways (DFSshallow) (Ladouche et al., 2001).  
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APPENDICES
APPENDIX A: Presentation of data from initial six week study season in 2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX Ai: A) Stream temperature and B) flow regimes of groundwater-fed stream in summer 2007 

APPENDIX Aii: A) Macroinvertebrate diversity and B) abundance within groundwater-fed streams in 2007 
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 APPENDIX Aiii: A)Hyporheic macroinvertebrate diversity and B) abundance in groundwater-fed streams of 

2007 

 

Site Cl- 
2H  

18O  pH 

A1 3.39 -156.08 -20.81 7.8 
A4 4.75 -155.59 -20.86 8.1 
B1 3.14 -156.94 -20.73 8.2 
B2 0.01 -157.07 -20.83 8.0 
B3 0.01 -156.68 -20.82 8.3 
Glacial 
meltwater 

0.016 -159.92 -21.48 - 

 

APPENDIX Aiv: Mean water chemistry values of groundwater-fed streams, in summer 2007 

 
APPENDIX Av: Isotopic composition of source waters and groundwater-fed streams in 2007. Barrow local meteoric water line (y 

= 7.12x – 9.13) calculated from GNIP dataset spanning 7 years. GMWL = 8x + 10 
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APPENDIX B: Equipment used in hydrological measurements of groundwater-fed streams 

Site Measurement Depth Equipment 

A2 Stream temperature 
and depth 

Surface Gemini TinyTag Plus 
and Druck Pressure 
Transducer 

Hyporheic 
temperature 

20cm Temperature Probe 
and CR10X datalogger 

A5 Stream temperature 
and depth 

Surface In-Situ Minitroll 

Hyporheic 
temperature 

50cm In-Situ Minitroll 

B1 Stream temperature 
and depth 

Surface Gemini TinyTag Plus 
and Druck Pressure 
Transducer 

Hyporheic 
temperature 

20cm Temperature Probe 
and CR10X datalogger 

B2 Stream temperature 
and depth 

Surface Trutrak Pressure 
Transducer 

B3 Stream temperature 
and depth 

Surface In-Situ Minitroll 

Hyporheic 
temperature 

50cm In-Situ Minitroll 

 

 

 

 

APPENDIX Avi: A) Diurnal stage and B) temperature variability of groundwater-fed streams in summer 2007 
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APPENDIX C: Annual temperature regimes of perennial streams A)A2, B)A5, C) B1. This 

demonstrates baseflow seepage from DFSdeep  
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APPENDIX D: List of taxa found in groundwater-fed streams in Denali National Park, Alaska.  

Order Family Genus Species 

Plecoptera Nemouridae Nemoura  arctica 

    Zapada  haysi 

  Perlodidae  Isoperla  pertersoni 

  Chloroperlidae Alaskaperla  ovibovis 

    Plumiperla  diversa 

  Leuctra Megaleuctra  spp. 

Ephemeroptera Baetidae Baetis  bicaudatus 

    Baetis tricaudatus 

Tricoptera Limnephilidae Ecclisomyia  spp. 

Diptera Chironomidae 
  

 
Psychodidae  Pericoma spp.  

  Ceratopogonidae  Serromyia spp. 

  Simuliidae 
    Tipulidae Tipula  spp. 

 
  Hexatoma  spp. 

  Empididae Chelifera  spp. 

    Clinocera spp. 

 
  Oreogeton  spp. 

  Muscidae Limniphora  spp. 

  Ephydridae Ephydra spp. 

Arachnida  Hydracarina  
 

  

Collembola Isotomidae     

 

 

 


