3 research outputs found

    Population- and individual-level dynamics of the intestinal microbiota of a small primate

    Get PDF
    Longitudinal sampling for intestinal microbiota in wild animals is difficult, leading to a lack of information on bacterial dynamics occurring in nature. We studied how the composition of microbiota communities changed temporally in free-ranging small primates, rufous mouse lemurs (Microcebus rufus). We marked and recaptured mouse lemurs during their mating season in Ranomafana National Park in southeastern mountainous rainforests of Madagascar for 2 years and determined the fecal microbiota compositions of these mouse lemurs with MiSeq sequencing. We collected 160 fecal samples from 71 animals and had two or more samples from 39 individuals. We found small, but statistically significant, effects of site and age on microbiota richness and diversity and effects of sex, year, and site on microbiota composition, while the within-year temporal trends were less clear. Within-host microbiota showed pervasive variation in intestinal bacterial community composition, especially during the second study year. We hypothesize that the biological properties of mouse lemurs, including their small body size and fast metabolism, may contribute to the temporal intraindividual-level variation, something that should be testable with more-extensive sampling regimes.Peer reviewe

    Metabarcoding gastrointestinal nematodes in sympatric endemic and non-endemic species in Ranomafana National Park, Madagascar

    Get PDF
    Sympatric species are known to host the same parasites species. Nevertheless, surveys examining parasite assemblages in sympatric species are rare. To understand how parasite assemblages in sympatric host species differ in a given locality, we used a noninvasive identification method based on high-throughput sequencing. We collected fecal samples from sympatric species in Ranomafana National Park, Madagascar, from September to December in 2010, 2011, and 2012 and identified their parasites by metabarcoding, sequencing a region of the small ribosomal subunit (18S) gene. Our survey included 11 host species, including endemic primates, rodents, frogs, gastropods, and nonendemic rats and dogs. We collected 872 samples, of which 571 contained nematodes and 249 were successfully sequenced. We identified nine putative species of parasites, although their correspondence to actual parasite species is not clear as the resolution of the marker gene differs between nematode clades. For the host species that we successfully sampled with 10 or more positive occurrences of nematodes, i.e., mouse lemurs (Microcebus rufus), black rats (Rattus rattus), and frogs (Anura), the parasite assemblage compositions differed significantly among host species, sampling sites, and sampling years. Our metabarcoding method shows promise in interrogating parasite assemblages in sympatric host species and our results emphasize the importance of choosing marker regions for parasite identification accuracy.Peer reviewe

    Differential tissue growth and cell adhesion alone drive early tooth morphogenesis: an ex vivo and in silico study

    Get PDF
    From gastrulation to late organogenesis animal development involves many genetic and bio-mechanical interactions between epithelial and mesenchymal tissues. Ectodermal organs, such as hairs, feathers and teeth are well studied examples of organs whose development is based on epithelial-mesenchymal interactions. These develop from a similar primordium through an epithelial folding and its interaction with the mesenchyme. Despite extensive knowledge on the molecular pathways involved, little is known about the role of bio-mechanical processes in the morphogenesis of these organs. We propose a simple computational model for the biomechanics of one such organ, the tooth, and contrast its predictions against cell-tracking experiments, mechanical relaxation experiments and the observed tooth shape changes over developmental time. We found that two biomechanical processes, differential tissue growth and differential cell adhesion, were enough, in the model, for the development of the 3D morphology of the early tooth germ. This was largely determined by the length and direction of growth of the cervical loops, lateral folds of the enamel epithelium. The formation of these cervical loops was found to require accelerated epithelial growth relative to other tissues and their direction of growth depended on specific differential adhesion between the three tooth tissues. These two processes and geometrical constraints in early tooth bud also explained the shape asymmetry between the lateral cervical loops and those forming in the anterior and posterior of the tooth. By performing mechanical perturbations ex vivo and in silico we inferred the distribution and direction of tensile stresses in the mesenchyme that restricted cervical loop lateral growth and forced them to grow downwards. Overall our study suggests detailed quantitative explanations for how bio-mechanical processes lead to specific morphological 3D changes over developmental time.Peer reviewe
    corecore