28 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Michigan Alcoholism Screening Test and Its Shortened Form: A Meta-Analytic Inquiry Into Score Reliability

    No full text
    Meta-analytic methods provide a framework around which an inquiry into MAST and SMAST score reliability was completed. Of the 470 measurement opportunities observed between 1971 and 2005, 62 (13.2%) were coupled with accurate reliability information. Weighted reliability estimates centered on.80 suggesting that the MAST and SMAST generally produce scores of similar and adequate reliability for most research purposes. However, the variability of internal consistency estimates shows that at times these tools will not produce reliable scores, particularly among female and nonclinical respondents. Multiple regression equations provide practical guidelines to improve reliability estimates for the future use of these instruments

    Evaluating the impact of prescription drug monitoring program implementation: a scoping review

    No full text
    Abstract Background Prescription drug monitoring programs (PDMPs) have been implemented in 49 out of 50 states in an effort to reduce opioid-related misuse, abuse, and mortality, yet the literature evaluating the impact of PDMP implementation remains limited. We conducted a scoping review to: (1) describe available evidence regarding impact of PDMPs in the U.S.; and (2) propose a conceptual model to inform future PDMP implementation and evaluation efforts. Methods Scoping systematic review following Arksey and O’Malley’s (2005) methodology. We identified 11 relevant studies based on inclusion criteria using a PubMed database search of English-language studies published 1/1/2000–5/31/16. Data were extracted and thematic analysis conducted to synthesize results. Results Extant evidence for the impact of PDMPs as an opioid risk mitigation tool remains mixed. Thematic analysis revealed four domains of opioid-related outcomes frequently examined in original studies evaluating PDMP implementation: (1) opioid prescribing; (2) opioid diversion and supply; (3) opioid misuse; and (4) opioid-related morbidity and mortality. An evaluation framework incorporating these domains is presented that highlights significant gaps in empirical research across each of these domains. Conclusions Evidence for the impact of state-level PDMPs remains mixed. We propose a conceptual model for evaluating PDMP implementation toward the goals of clarifying PDMP mechanisms of impact, identifying characteristics of PDMPs associated with best outcomes, and maximizing the utility of PDMP policy and implementation to reduce opioid-related public health burden
    corecore