47 research outputs found

    Reduced expression of monocyte CD200R is associated with enhanced proinflammatory cytokine production in sarcoidosis

    Get PDF
    In sarcoidosis, the proinflammatory cytokines interferon gamma, tumour necrosis factor and interleukin-6 are released by monocyte-derived macrophages and lymphocytes in the lungs and other affected tissues. Regulatory receptors expressed on monocytes and macrophages act to suppress cytokine production, and reduced expression of regulatory receptors may thus promote tissue inflammation. The aim of this study was to characterise the role of regulatory receptors on blood monocytes in patients with sarcoidosis. Cytokine release in response to stimulation of whole blood was measured in healthy controls and Caucasian non-smoking patients with sarcoidosis who were not taking disease modifying therapy. Expression of the regulatory molecules IL-10R, SIRP-α/β, CD47, CD200R, and CD200L was measured by flow cytometry, and functional activity was assessed using blocking antibodies. Stimulated whole blood and monocytes from patients with sarcoidosis produced more TNF and IL-6 compared with healthy controls. 52.9% of sarcoidosis patients had monocytes characterised by low expression of CD200R, compared with 11.7% of controls (p < 0.0001). Patients with low monocyte CD200R expression produced higher levels of proinflammatory cytokines. In functional studies, blocking the CD200 axis increased production of TNF and IL-6. Reduced expression of CD200R on monocytes may be a mechanism contributing to monocyte and macrophage hyper-activation in sarcoidosis

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Melanoma Cell Expression of CD200 Inhibits Tumor Formation and Lung Metastasis via Inhibition of Myeloid Cell Functions

    Get PDF
    CD200 is a cell surface glycoprotein that functions through engaging CD200 receptor on cells of the myeloid lineage and inhibits their functions. Expression of CD200 has been implicated in a variety of human cancer cells including melanoma cells and has been thought to play a protumor role. To investigate the role of cancer cell expression of CD200 in tumor formation and metastasis, we generated CD200-positive and CD200-negative B16 melanoma cells. Subcutaneous injection of CD200-positive B16 melanoma cells inhibited tumor formation and growth in C57BL/6 mice but not in Rag1−/−C57BL/6 mice. However, i.v. injection of CD200-positive B16 melanoma cells dramatically inhibited tumor foci formation in the lungs of both C57BL/6 and Rag1−/−C57BL6 mice. Flow cytometry analysis revealed higher expression of CD200R in Gr1+ myeloid cells in the lung than in peripheral myeloid cells. Depletion of Gr1+ cells or stimulation of CD200R with an agonistic antibody in vivo dramatically inhibited tumor foci formation in the lungs. In addition, treatment with tumor antigen specific CD4 or CD8 T cells or their combination yielded a survival advantage for CD200 positive tumor bearing mice over mice bearing CD200-negative tumors. Taken together, we have revealed a novel role for CD200-CD200R interaction in inhibiting tumor formation and metastasis. Targeting CD200R may represent a novel approach for cancer immunotherapy

    Doyne lecture 2016:intraocular health and the many faces of inflammation

    Get PDF
    Dogma for reasons of immune privilege including sequestration (sic) of ocular antigen, lack of lymphatic and immune competent cells in the vital tissues of the eye has long evaporated. Maintaining tissue and cellular health to preserve vision requires active immune responses to prevent damage and respond to danger. A priori the eye must contain immune competent cells, undergo immune surveillance to ensure homoeostasis as well as an ability to promote inflammation. By interrogating immune responses in non-infectious uveitis and compare with age-related macular degeneration (AMD), new concepts of intraocular immune health emerge. The role of macrophage polarisation in the two disorders is a tractable start. TNF-alpha regulation of macrophage responses in uveitis has a pivotal role, supported via experimental evidence and validated by recent trial data. Contrast this with the slow, insidious degeneration in atrophic AMD or in neovasular AMD, with the compelling genetic association with innate immunity and complement, highlights an ability to attenuate pathogenic immune responses and despite known inflammasome activation. Yolk sac-derived microglia maintains tissue immune health. The result of immune cell activation is environmentally dependent, for example, on retinal cell bioenergetics status, autophagy and oxidative stress, and alterations that skew interaction between macrophages and retinal pigment epithelium (RPE). For example, dead RPE eliciting macrophage VEGF secretion but exogenous IL-4 liberates an anti-angiogenic macrophage sFLT-1 response. Impaired autophagy or oxidative stress drives inflammasome activation, increases cytotoxicity, and accentuation of neovascular responses, yet exogenous inflammasome-derived cytokines, such as IL-18 and IL-33, attenuate responses
    corecore