1,331 research outputs found

    Decision-support tools for cost-effective bioprocess design in the cell therapy sector

    Get PDF

    Towards a marine biorefinery through the hydrothermal liquefaction of macroalgae native to the United Kingdom

    Get PDF
    Hydrothermal liquefaction (HTL) is a promising biomass conversion method that can be incorporated into a biorefinery paradigm for simultaneous production of fuels, aqueous fertilisers and potential remediation of municipal or mariculture effluents. HTL of aquatic crops, such as marine macro- or microalgae, has significant potential for the UK owing to its extensive coastline. As such, macroalgae present a particularly promising feedstock for future UK biofuel production. This study aimed to bridge the gaps between previous accounts of macroalgal HTL by carrying out a more comprehensive screen of a number of species from all three major macroalgae classes, and examining the correlations between biomass biochemical composition and HTL reactivity. HTL was used to process thirteen South West UK macroalgae species from all three major classes (Chlorophyceae, Heterokontophyceae and Rhodophyceae) to produce bio-crude oil, a bio-char, gas and aqueous phase products. Chlorophyceae of the genus Ulva generated the highest bio-crude yields (up to 29.9% for U. lactuca). Aqueous phase phosphate concentrations of up to 236 mg L−1 were observed, obtained from the Rhodophyta, S. chordalis. Across the 13 samples, a correlation between increasing biomass lipids and increasing bio-crude yield was observed, as well as an increase in biomass nitrogen generally contributing to bio-crude nitrogen content. A broader range of macroalgae species has been examined than in any study previously and, by processing using identical conditions across all feedstocks, has enabled a more cohesive assessment of the effects of biochemical composition

    Fandom and Coercive Empowerment: The commissioned production of Chinese online literature

    Get PDF
    This article examines how the relationship between consumers and producers of cultural products is shaped by the proprietary nature of digital platforms. Drawing on 4 years of online observation and analysis, we examine the relationship between the producers of online Chinese fiction, amateur writers, and their consumers, that is, the fan communities of readers who respond to their work. Enabled by Chinese literary websites, readers act like sponsors who provide emotional and financial incentives for writers to produce online fictions by commenting, voting, and sending money. Readers become actively involved not just because of the content of the stories but because they form strong commitments to stories and their writers, and gain reciprocity and a sense of self-determination during the interactional process. We argue that although writers are freer from state control online, they are still beholden to the whims of their fans because of what we call the commissioned production of fictions. We contribute to fan community studies by analyzing how commercialized website settings structure the strategies available to participants, how these settings affect the content of the cultural products, and how the Chinese historical and cultural contexts impact the dynamics of the online community.postprin

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy

    The pathophysiology of malarial anaemia: where have all the red cells gone?

    Get PDF
    Malarial anaemia is an enormous public health problem in endemic areas and occurs predominantly in children in the first 3 years of life. Anaemia is due to both a great increase in clearance of uninfected cells and a failure of an adequate bone marrow response. Odhiambo, Stoute and colleagues show how the age distribution of malarial anaemia and the haemolysis of red blood cells may be linked by an age-dependent increase in the capacity of red blood cells to inactivate complement components absorbed or deposited directly on to the surface of the red blood cell. In this commentary, we discuss what has been established about the role of complement deposition on the surface of red blood cells in the pathology of malarial anaemia, how genetic polymorphisms of the complement control proteins influence the outcome of malaria infection and how the findings of Odhiambo, Stoute and colleagues and others shed light on the puzzling age distribution of different syndromes of severe malaria

    Two Earth-sized planets orbiting Kepler-20

    Get PDF
    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R Earth), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth (0.87R Earth), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011; Published online 20 December 201
    corecore