35 research outputs found

    Detection of Molecular Hydrogen Orbiting a "Naked" T Tauri Star

    Get PDF
    Astronomers have established that for a few million years newborn stars possess disks of orbiting gas and dust. Such disks, which are likely sites of planet formation, appear to disappear once these stars reach ages of 5-10 times 10^6 yr; yet, >= 10^7 yr is thought necessary for giant planet formation. If disks dissipate in less time than is needed for giant planet formation, such planets may be rare and those known around nearby stars would be anomalies. Herein, we report the discovery of H_2 gas orbiting a weak-lined T Tauri star heretofore presumed nearly devoid of circumstellar material. We estimate that a significant amount of H_2 persists in the gas phase, but only a tiny fraction of this mass emits in the near-infrared. We propose that this star possesses an evolved disk that has escaped detection thus far because much of the dust has coagulated into planetesimals. This discovery suggests that the theory that disks are largely absent around such stars should be reconsidered. The widespread presence of such disks would indicate that planetesimals can form quickly and giant planet formation can proceed to completion before the gas in circumstellar disks disperses.Comment: latex 12 pages, including 1 figur

    Variations of the 10 um Silicate Features in the Actively Accreting T Tauri Stars: DG Tau and XZ Tau

    Full text link
    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 um silicate complex in the spectra of two sources - DG Tau and XZ Tau - undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolution coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.Comment: 6 pages, emulate apj format, accepted for publication in ApJ Letter

    Quiescent H2 Emission From Pre-Main Sequence Stars in Chamaeleon I

    Get PDF
    We report the discovery of quiescent emission from molecular hydrogen gas located in the circumstellar disks of six pre-main sequence stars, including two weak-line T Tauri stars (TTS), and one Herbig AeBe star, in the Chamaeleon I star forming region. For two of these stars, we also place upper limits on the 2->1 S(1)/1->0 S(1) line ratios of 0.4 and 0.5. Of the 11 pre-main sequence sources now known to be sources of quiescent near-infrared hydrogen emission, four possess transitional disks, which suggests that detectable levels of H2_2 emission and the presence of inner disk holes are correlated. These H2_2 detections demonstrate that these inner holes are not completely devoid of gas, in agreement with the presence of observable accretion signatures for all four of these stars and the recent detections of [Ne II] emission from three of them. The overlap in [Ne II] and H2_2 detections hints at a possible correlation between these two features and suggests a shared excitation mechanism of high energy photons. Our models, combined with the kinematic information from the H2_2 lines, locate the bulk of the emitting gas at a few tens of AU from the stars. We also find a correlation between H2_2 detections and those targets which possess the largest Hα\alpha equivalent widths, suggesting a link between accretion activity and quiescent H2_2 emission. We conclude that quiescent H2_2 emission from relatively hot gas within the disks of TTS is most likely related to on-going accretion activity, the production of UV photons and/or X-rays, and the evolutionary status of the dust grain populations in the inner disks.Comment: 12 pages, emulateapj, Accepted by Ap

    Correlating Changes in Spot Filling Factors with Stellar Rotation: The Case of LkCa 4

    Get PDF
    We present a multi-epoch spectroscopic study of LkCa 4, a heavily spotted non-accreting T Tauri star. Using SpeX at NASA's Infrared Telescope Facility (IRTF), 12 spectra were collected over five consecutive nights, spanning ≈\approx 1.5 stellar rotations. Using the IRTF SpeX Spectral Library, we constructed empirical composite models of spotted stars by combining a warmer (photosphere) standard star spectrum with a cooler (spot) standard weighted by the spot filling factor, fspotf_{spot}. The best-fit models spanned two photospheric component temperatures, TphotT_{phot} = 4100 K (K7V) and 4400 K (K5V), and one spot component temperature, TspotT_{spot} = 3060 K (M5V) with an AVA_V of 0.3. We find values of fspotf_{spot} to vary between 0.77 and 0.94 with an average uncertainty of ∼\sim0.04. The variability of fspotf_{spot} is periodic and correlates with its 3.374 day rotational period. Using a mean value for fspotmeanf^{mean}_{spot} to represent the total spot coverage, we calculated spot corrected values for TeffT_{eff} and L⋆L_\star. Placing these values alongside evolutionary models developed for heavily spotted young stars, we infer mass and age ranges of 0.45-0.6 M⊙M_\odot and 0.50-1.25 Myr, respectively. These inferred values represent a twofold increase in the mass and a twofold decrease in the age as compared to standard evolutionary models. Such a result highlights the need for constraining the contributions of cool and warm regions of young stellar atmospheres when estimating TeffT_{eff} and L⋆L_\star to infer masses and ages as well as the necessity for models to account for the effects of these regions on the early evolution of low-mass stars.Comment: 21 pages, 9 Figures; Accepted for publication in Ap

    Circumbinary Gas Accretion onto a Central Binary: Infrared Molecular Hydrogen Emission from GG Tau A

    Full text link
    We present high spatial resolution maps of ro-vibrational molecular hydrogen emission from the environment of the GG Tau A binary component in the GG Tau quadruple system. The H2 v= 1-0 S(1) emission is spatially resolved and encompasses the inner binary, with emission detected at locations that should be dynamically cleared on several hundred-year timescales. Extensions of H2 gas emission are seen to ~100 AU distances from the central stars. The v = 2-1 S(1) emission at 2.24 microns is also detected at ~30 AU from the central stars, with a line ratio of 0.05 +/- 0.01 with respect to the v = 1-0 S(1) emission. Assuming gas in LTE, this ratio corresponds to an emission environment at ~1700 K. We estimate that this temperature is too high for quiescent gas heated by X-ray or UV emission from the central stars. Surprisingly, we find that the brightest region of H2 emission arises from a spatial location that is exactly coincident with a recently revealed dust "streamer" which seems to be transferring material from the outer circumbinary ring around GG Tau A into the inner region. As a result, we identify a new excitation mechanism for ro-vibrational H2 stimulation in the environment of young stars. The H2 in the GG Tau A system appears to be stimulated by mass accretion infall as material in the circumbinary ring accretes onto the system to replenish the inner circumstellar disks. We postulate that H2 stimulated by accretion infall could be present in other systems, particularly binaries and "transition disk" systems which have dust cleared gaps in their circumstellar environments.Comment: 18 pages, including 4 figures. Accepted for publication in Ap

    Physical Conditions of Accreting Gas in T Tauri Star Systems

    Full text link
    We present results from a low resolution (R~300) near-infrared spectroscopic variability survey of actively accreting T Tauri stars (TTS) in the Taurus-Auriga star forming region. Paschen and Brackett series H I recombination lines were detected in 73 spectra of 15 classical T Tauri systems. The values of the Pan/PaB, Brn/BrG, and BrG/Pan H I line ratios for all observations exhibit a scatter of < 20% about the weighted mean, not only from source to source, but also for epoch-to-epoch variations in the same source. A representative or `global' value was determined for each ratio in both the Paschen and Brackett series as well as the BrG/Pan line ratios. A comparison of observed line ratio values was made to those predicted by the temperature and electron density dependent models of Case B hydrogen recombination line theory. The measured line ratios are statistically well-fit by a tightly constrained range of temperatures (T < 2000 K) and electron densities 1e9 < n_e < 1e10 cm^-3. A comparison of the observed line ratio values to the values predicted by the optically thick and thin local thermodynamic equilibrium cases rules out these conditions for the emitting H I gas. Therefore, the emission is consistent with having an origin in a non-LTE recombining gas. While the range of electron densities is consistent with the gas densities predicted by existing magnetospheric accretion models, the temperature range constrained by the Case B comparison is considerably lower than that expected for accreting gas. The cooler gas temperatures will require a non-thermal excitation process (e.g., coronal/accretion-related X-rays and UV photons) to power the observed line emission.Comment: 12 pages, emulateapj format, Accepted for publication in Ap
    corecore