172 research outputs found

    What have transgenic and knockout animals taught us about respiratory disease?

    Get PDF
    Over the past decade there has been a significant shift to the use of murine models for investigations into the molecular basis of respiratory diseases, including asthma and chronic obstructive pulmonary disease. These models offer the exciting prospect of dissecting the complex interaction between cytokines, chemokines and growth related peptides in disease pathogenesis. Furthermore, the receptors and the intracellular signalling pathways that are subsequently activated are amenable for study because of the availability of monoclonal antibodies and techniques for targeted gene disruption and gene incorporation for individual mediators, receptors and proteins. However, it is clear that extrapolation from these models to the human condition is not straightforward, as reflected by some recent clinical disappointments. This is not necessarily a problem with the use of mice itself, but results from our continued ignorance of the disease process and how to improve the modelling of complex interactions between different inflammatory mediators that underlie clinical pathology. This review highlights some of the strengths and weaknesses of murine models of respiratory disease

    Quantification of collagen and proteoglycan deposition in a murine model of airway remodelling

    Get PDF
    BACKGROUND: Sub-epithelial extracellular matrix deposition is a feature of asthmatic airway remodelling associated with severity of disease, decline in lung function and airway hyperresponsiveness. The composition of, and mechanisms leading to, this increase in subepithelial matrix, and its importance in the pathogenesis of asthma are unclear. This is partly due to limitations of the current models and techniques to assess airway remodelling. METHODS: In this study we used a modified murine model of ovalbumin sensitisation and challenge to reproduce features of airway remodelling, including a sustained increase in sub-epithelial matrix deposition. In addition, we have established techniques to accurately and specifically measure changes in sub-epithelial matrix deposition, using histochemical and immunohistochemical staining in conjunction with digital image analysis, and applied these to the measurement of collagen and proteoglycans. RESULTS: 24 hours after final ovalbumin challenge, changes similar to those associated with acute asthma were observed, including inflammatory cell infiltration, epithelial cell shedding and goblet cell hyperplasia. Effects were restricted to the bronchial and peribronchial regions with parenchymal lung of ovalbumin sensitised and challenged mice appearing histologically normal. By 12 days, the acute inflammatory changes had largely resolved and increased sub-epithelial staining for collagen and proteoglycans was observed. Quantitative digital image analysis confirmed the increased deposition of sub-epithelial collagen (33%, p < 0.01) and proteoglycans (32%, p < 0.05), including decorin (66%, p < 0.01). In addition, the increase in sub-epithelial collagen deposition was maintained for at least 28 days (48%, p < 0.001). CONCLUSION: This animal model reproduces many of the features of airway remodelling found in asthma and allows accurate and reproducible measurement of sub-epithelial extra-cellular matrix deposition. As far as we are aware, this is the first demonstration of increased sub-epithelial proteoglycan deposition in an animal model of airway remodelling. This model will be useful for measurement of other matrix components, as well as for assessment of the molecular mechanisms contributing to, and agents to modulate airway remodelling

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Stem cells and repair of lung injuries

    Get PDF
    Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung

    Activity-Based Funding of Hospitals and Its Impact on Mortality, Readmission, Discharge Destination, Severity of Illness, and Volume of Care: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Activity-based funding (ABF) of hospitals is a policy intervention intended to re-shape incentives across health systems through the use of diagnosis-related groups. Many countries are adopting or actively promoting ABF. We assessed the effect of ABF on key measures potentially affecting patients and health care systems: mortality (acute and post-acute care); readmission rates; discharge rate to post-acute care following hospitalization; severity of illness; volume of care. &nbsp; &nbsp; Methods: We undertook a systematic review and meta-analysis of the worldwide evidence produced since 1980. We included all studies reporting original quantitative data comparing the impact of ABF versus alternative funding systems in acute care settings, regardless of language. We searched 9 electronic databases (OVID MEDLINE, EMBASE, OVID Healthstar, CINAHL, Cochrane CENTRAL, Health Technology Assessment, NHS Economic Evaluation Database, Cochrane Database of Systematic Reviews, and Business Source), hand-searched reference lists, and consulted with experts. Paired reviewers independently screened for eligibility, abstracted data, and assessed study credibility according to a pre-defined scoring system, resolving conflicts by discussion or adjudication. &nbsp; &nbsp; Results: Of 16,565 unique citations, 50 US studies and 15 studies from 9 other countries proved eligible (i.e. Australia, Austria, England, Germany, Israel, Italy, Scotland, Sweden, Switzerland). We found consistent and robust differences between ABF and no-ABF in discharge to post-acute care, showing a 24% increase with ABF (pooled relative risk = 1.24, 95% CI 1.18–1.31). Results also suggested a possible increase in readmission with ABF, and an apparent increase in severity of illness, perhaps reflecting differences in diagnostic coding. Although we found no consistent, systematic differences in mortality rates and volume of care, results varied widely across studies, some suggesting appreciable benefits from ABF, and others suggesting deleterious consequences. &nbsp; &nbsp; Conclusions: Transitioning to ABF is associated with important policy- and clinically-relevant changes. Evidence suggests substantial increases in admissions to post-acute care following hospitalization, with implications for system capacity and equitable access to care. High variability in results of other outcomes leaves the impact in particular settings uncertain, and may not allow a jurisdiction to predict if ABF would be harmless. Decision-makers considering ABF should plan for likely increases in post-acute care admissions, and be aware of the large uncertainty around impacts on other critical outcomes
    • …
    corecore