26 research outputs found

    Biosynthesis of Metal Sites

    No full text

    Identification and Functional Analysis of in Vivo Phosphorylation Sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 Receptor Kinase

    No full text
    Brassinosteroids (BRs) regulate multiple aspects of plant growth and development and require an active BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) for hormone perception and signal transduction. Many animal receptor kinases exhibit ligand-dependent oligomerization followed by autophosphorylation and activation of the intracellular kinase domain. To determine if early events in BR signaling share this mechanism, we used coimmunoprecipitation of epitope-tagged proteins to show that in vivo association of BRI1 and BAK1 was affected by endogenous and exogenous BR levels and that phosphorylation of both BRI1 and BAK1 on Thr residues was BR dependent. Immunoprecipitation of epitope-tagged BRI1 from Arabidopsis thaliana followed by liquid chromatography–tandem mass spectrometry (LC/MS/MS) identified S-838, S-858, T-872, and T-880 in the juxtamembrane region, T-982 in the kinase domain, and S-1168 in C-terminal region as in vivo phosphorylation sites of BRI1. MS analysis also strongly suggested that an additional two residues in the juxtamembrane region and three sites in the activation loop of kinase subdomain VII/VIII were phosphorylated in vivo. We also identified four specific BAK1 autophosphorylation sites in vitro using LC/MS/MS. Site-directed mutagenesis of identified and predicted BRI1 phosphorylation sites revealed that the highly conserved activation loop residue T-1049 and either S-1044 or T-1045 were essential for kinase function in vitro and normal BRI1 signaling in planta. Mutations in the juxtamembrane or C-terminal regions had only small observable effects on autophosphorylation and in planta signaling but dramatically affected phosphorylation of a peptide substrate in vitro. These findings are consistent with many aspects of the animal receptor kinase model in which ligand-dependent autophosphorylation of the activation loop generates a functional kinase, whereas phosphorylation of noncatalytic intracellular domains is required for recognition and/or phosphorylation of downstream substrates

    Recruitment of Ikaros to Pericentromeric Heterochromatin Is Regulated by Phosphorylation*

    No full text
    Ikaros encodes a zinc finger protein that is involved in heritable gene silencing. In hematopoietic cells, Ikaros localizes to pericentromeric heterochromatin (PC-HC) where it recruits its target genes, resulting in their activation or repression via chromatin remodeling. The function of Ikaros is controlled by post-translational modifications. CK2 kinase has been shown to phosphorylate Ikaros at its C terminus, affecting cell cycle progression. Using in vivo labeling of murine thymocytes followed by phosphopeptide mapping, we identified four novel Ikaros phosphorylation sites. Functional analysis of phosphomimetic mutants showed that the phosphorylation of individual amino acids determines the affinity of Ikaros toward probes derived from PC-HC. In vivo experiments demonstrated that targeting of Ikaros to PC-HC is regulated by phosphorylation. The ability of Ikaros to bind the upstream regulatory elements of its known target gene terminal deoxynucleotidyltransferase (TdT) was decreased by phosphorylation of two amino acids. In thymocytes, Ikaros acts as a repressor of the TdT gene. Induction of differentiation of thymocytes with phorbol 12-myristate 13-acetate plus ionomycin results in transcriptional repression of TdT expression. This process has been associated with increased binding of Ikaros to the upstream regulatory element of TdT. Phosphopeptide analysis of in vivo-labeled thymocytes revealed that Ikaros undergoes dephosphorylation during induction of thymocyte differentiation and that dephosphorylation is responsible for increased DNA binding affinity of Ikaros toward the TdT promoter. We propose a model whereby reversible phosphorylation of Ikaros at specific amino acids controls the subcellular localization of Ikaros as well as its ability to regulate TdT expression during thymocyte differentiation

    Aqueous Humor Dynamics and Its Influence on Glaucoma

    Full text link
    The chapter describes the anatomical and functional features of the aqueous humor (AH) dynamics with special focus on pathological changes in glaucoma. The main therapeutic approaches to medically and surgically regulate AH production and outflow are discussed

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    No full text

    Alirocumab and cardiovascular outcomes after acute coronary syndrome

    No full text
    BACKGROUN
    corecore