126 research outputs found
Influence of hyperinsulinemic – hypoglycemic clamp on induced platelet aggregation, activity of physiological anticoagulants and von Willebrand factor in patients with type I diabetes
Background. Intensive glycaemic control in patients with type 1 diabetes may lead to hypoglycaemia and thus increase the risk of cardiovascular and cerebrovascular events. Platelet activation and/or decreased activity of physiological anticoagulants during hypoglycaemia may play a role in the development of cardiovascular or cerebrovascular complications.
Aims. To investigate induced platelet activity, the activity of physiological anticoagulants, and the von Wil-lebrand factor in patients with type 1 diabetes with the hyperinsulinaemichypoglycaemic clamp.
Materials and methods. We examined 11 patients with type 1 diabetes without macro- and micro-vascular complications (6 males, 5 females, mean age 23.7 5.6 years, A1C 9.7 2.3%). Induced platelet aggregation, physiological anticoagulants (Protein S, Protein C, AT III) and the von Willebrand factor were studied at hyperglycaemic, euglycaemic, and hypoglycaemic stages during use of a hyperinsulinaemic (1 mU/kg/min) hypoglycaemic clamp.
Results. Platelet aggregation to all agonists increased significantly during the hypoglycaemic stage, compared with the euglycaemic or hyperglycaemic stages. There was no difference in platelet aggregation between the euglycaemic and hyperglycaemic stages. Platelet aggregation to all agonists increased during the hypoglycaemic stage compared with the hyperglycaemic period: thrombin23.9%, ADP30.6%, arachidonic acid30.9%, collagen69.4% and ristocetin70.8%. During hypoglycaemia aggregation to ADP, arachidonic acid and collagen remained within normal limits (upper quartile); aggregation to thrombin was significantly above normal limits and aggregation to ristocetin remained significantly below lower limits. Protein S activity was significantly increased during hypoglycaemia compared with euglycaemia (p = 0.046) and hyperglycaemia (p = 0.046). Antithrombin-III activity decreased significantly at the euglycaemic and hypoglycaemic stages, compared with the hyperglycaemic period, but still remained significantly elevated above the upper threshold. Protein C and vWf activity did not change significantly.
Conclusions. In patients with type 1 diabetes platelet aggregation and protein S activity increases significantly at the hypoglycaemic stage of the hyperinsulinaemichypoglycaemic clamp. Platelet activation is directly caused by hypoglycaemia and not by decreasing glucose levels. Increased protein S activity is a compensatory response to platelet activation
LINT, a Novel dL(3)mbt-Containing Complex, Represses Malignant Brain Tumour Signature Genes
Mutations in the l(3)mbt tumour suppressor result in overproliferation of Drosophila larval brains. Recently, the derepression of different gene classes in l(3)mbt mutants was shown to be causal for transformation. However, the molecular mechanisms of dL(3)mbt-mediated gene repression are not understood. Here, we identify LINT, the major dL(3)mbt complex of Drosophila. LINT has three core subunits—dL(3)mbt, dCoREST, and dLint-1—and is expressed in cell lines, embryos, and larval brain. Using genome-wide ChIP–Seq analysis, we show that dLint-1 binds close to the TSS of tumour-relevant target genes. Depletion of the LINT core subunits results in derepression of these genes. By contrast, histone deacetylase, histone methylase, and histone demethylase activities are not required to maintain repression. Our results support a direct role of LINT in the repression of brain tumour-relevant target genes by restricting promoter access
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Intraneuronal Aβ immunoreactivity is not a predictor of brain amyloidosis-β or neurofibrillary degeneration
Amyloid β (Aβ) immunoreactivity in neurons was examined in brains of 32 control subjects, 31 people with Down syndrome, and 36 patients with sporadic Alzheimer’s disease to determine if intraneuronal Aβ immunoreactivity is an early manifestation of Alzheimer-type pathology leading to fibrillar plaque formation and/or neurofibrillary degeneration. The appearance of Aβ immunoreactivity in neurons in infants and stable neuron-type specific Aβ immunoreactivity in a majority of brain structures during late childhood, adulthood, and normal aging does not support this hypothesis. The absence or detection of only traces of reaction with antibodies against 4–13 aa and 8–17 aa of Aβ in neurons indicated that intraneuronal Aβ was mainly a product of α- and γ-secretases (Aβ(17–40/42)). The presence of N-terminally truncated Aβ(17–40) and Aβ(17–42) in the control brains was confirmed by Western blotting and the identity of Aβ(17–40) was confirmed by mass spectrometry. The prevalence of products of α- and γ -secretases in neurons and β- and γ-secretases in plaques argues against major contribution of Aβ-immunopositive material detected in neuronal soma to amyloid deposit in plaques. The strongest intraneuronal Aβ(17–42) immunoreactivity was observed in structures with low susceptibility to fibrillar Aβ deposition, neurofibrillary degeneration, and neuronal loss compared to areas more vulnerable to Alzheimer-type pathology. These observations indicate that the intraneuronal Aβ immunoreactivity detected in this study is not a predictor of brain amyloidosis or neurofibrillary degeneration. The constant level of Aβ immunoreactivity in structures free from neuronal pathology during essentially the entire life span suggests that intraneuronal amino-terminally truncated Aβ represents a product of normal neuronal metabolism
Abnormal Intracellular Accumulation and Extracellular Aβ Deposition in Idiopathic and Dup15q11.2-q13 Autism Spectrum Disorders
<div><h3>Background</h3><p>It has been shown that amyloid ß (Aβ), a product of proteolytic cleavage of the amyloid β precursor protein (APP), accumulates in neuronal cytoplasm in non-affected individuals in a cell type–specific amount.</p> <h3>Methodology/Principal Findings</h3><p>In the present study, we found that the percentage of amyloid-positive neurons increases in subjects diagnosed with idiopathic autism and subjects diagnosed with duplication 15q11.2-q13 (dup15) and autism spectrum disorder (ASD). In spite of interindividual differences within each examined group, levels of intraneuronal Aβ load were significantly greater in the dup(15) autism group than in either the control or the idiopathic autism group in 11 of 12 examined regions (p<0.0001 for all comparisons; Kruskall-Wallis test). In eight regions, intraneuronal Aβ load differed significantly between idiopathic autism and control groups (p<0.0001). The intraneuronal Aβ was mainly N-terminally truncated. Increased intraneuronal accumulation of Aβ<sub>17–40/42</sub> in children and adults suggests a life-long enhancement of APP processing with α-secretase in autistic subjects. Aβ accumulation in neuronal endosomes, autophagic vacuoles, Lamp1-positive lysosomes and lipofuscin, as revealed by confocal microscopy, indicates that products of enhanced α-secretase processing accumulate in organelles involved in proteolysis and storage of metabolic remnants. Diffuse plaques containing Aβ<sub>1–40/42</sub> detected in three subjects with ASD, 39 to 52 years of age, suggest that there is an age-associated risk of alterations of APP processing with an intraneuronal accumulation of a short form of Aβ and an extracellular deposition of full-length Aβ in nonfibrillar plaques.</p> <h3>Conclusions/Significance</h3><p>The higher prevalence of excessive Aβ accumulation in neurons in individuals with early onset of intractable seizures, and with a high risk of sudden unexpected death in epilepsy in autistic subjects with dup(15) compared to subjects with idiopathic ASD, supports the concept of mechanistic and functional links between autism, epilepsy and alterations of APP processing leading to neuronal and astrocytic Aβ accumulation and diffuse plaque formation.</p> </div
- …