29 research outputs found

    Water Availability Is the Main Climate Driver of Neotropical Tree Growth

    Get PDF
    • Climate models for the coming century predict rainfall reduction in the Amazonian region, including change in water availability for tropical rainforests. Here, we test the extent to which climate variables related to water regime, temperature and irradiance shape the growth trajectories of neotropical trees. • We developed a diameter growth model explicitly designed to work with asynchronous climate and growth data. Growth trajectories of 205 individual trees from 54 neotropical species censused every 2 months over a 4-year period were used to rank 9 climate variables and find the best predictive model. • About 9% of the individual variation in tree growth was imputable to the seasonal variation of climate. Relative extractable water was the main predictor and alone explained more than 60% of the climate effect on tree growth, i.e. 5.4% of the individual variation in tree growth. Furthermore, the global annual tree growth was more dependent on the diameter increment at the onset of the rain season than on the duration of dry season. • The best predictive model included 3 climate variables: relative extractable water, minimum temperature and irradiance. The root mean squared error of prediction (0.035 mm.d–1) was slightly above the mean value of the growth (0.026 mm.d–1). • Amongst climate variables, we highlight the predominant role of water availability in determining seasonal variation in tree growth of neotropical forest trees and the need to include these relationships in forest simulators to test, in silico, the impact of different climate scenarios on the future dynamics of the rainforest

    KTC De Marke: twee decennia innovaties voor duurzame melkveehouderij

    Get PDF
    De Marke, Proefbedrijf voor Melkveehouderij en Milieu bestaat dit jaar 20 jaar. Met militaire precisie is destijds de strategie, opzet en ontwikkeling van dit melkveeproefbedrijf door Frans Aarts, Edo Biewinga en Richard Donker vastgelegd in De Marke-rapport nr. 1: 'Melkveehouderij bij stringente milieunormen'. Nu, 20 jaar later, is er mede door hun aanzet meer bereikt dan we voor mogelijk hielden. Koeien melken met minimale belasting van de omgeving: de melkveehouderij is en blijft een gewaardeerde voedselproducent die schoon werkt in een fraai landschap. Alle reden om hier in 2012 uitgebreid bij stil te staan

    Simulation of stand transpiration based on a xylem water flow model for individual trees.

    No full text
    Quantifying the water exchange between a forest stand and the atmosphere is of major interest for the prediction of future growth conditions and the planning of silvicultural treatments. In the present study, we address (i) the uncertainties of sap flow estimations at the tree level and (ii) the performance of the simulation of stand transpiration. Terrestrial laser scan images (. TLS) of a mature beech stand (. Fagus sylvatica L.) in Southwestern Germany serve as input data for a representation of the aboveground tree architecture of the study stand. In the single-tree xylem water flow model (. XWF) used here, 98 beech trees are represented by 3D graphs of connected cylinders with explicit orientation and size. Beech-specific hydraulic parameters and physical properties of individual trees determine the physiological response of the tree model to environmental conditions.The XWF simulations are performed without further calibration to sap flow measurements. The simulations reliably match up with sap flow estimates derived from sap flow density measurements. The density measurements strongly depend on individual sapwood area estimates and the characterization of radial sap flow density gradients with xylem depth. Although the observed pure beech stand is even-aged, we observe a high variability in sap flow rates among the individual trees. Simulations of the individual sap flow rates show a corresponding variability due to the distribution of the crown projection area in the canopy and the different proportions of sapwood area.Stand transpiration is obtained by taking the sum of 98 single-tree simulations and the corresponding sap flow estimations, which are then compared with the stand-level root water uptake model (. RWU model) simulation. Using the RWU model results in a 35% higher simulation of seasonal stand transpiration relative to the XWF model. These findings demonstrate the importance of individual tree dimensions and stand heterogeneity assessments in estimating stand water use. As a consequence of species-specific model parameterization and precise TLS-based stand characterization, the XWF model is applicable to various sites and tree species and is a promising tool for predicting the possible water supply limitations of pure and mixed forest stands
    corecore