69 research outputs found

    Detecting Interplanetary Dust Particles with Radars to Study the Dynamics at the Edge of the Space

    Get PDF
    The Earth's mesosphere is the region of the atmosphere between approximately 60-120 km altitude, where the transition from hydrodynamic flow to molecular diffusion occurs. It is highly dynamic region where turbulence by wave braking is produced and energy is deposited from sources from both, below and above this altitude range. Because aircraft and nearly all balloons reach altitudes below approximately 50 km and orbital spacecrafts are well above approximately 400 km, the mesosphere has only been accessed through the use of sounding rockets or remote sensing techniques, and as a result, it is the most poorly understood part of the atmosphere. In addition, millions of Interplanetary Dust Particles (IDPs) enter the atmosphere. Within the mesosphere most of these IDPs melt or vaporize as a result of collisions with the air particles producing meteors that can be detected with radars. This provides a mean to study the dynamics of this region. In this lecture the basic principles of the utilization of meteor radars to study the dynamics of the mesosphere will be presented. A system overview of these systems will be provided as well as discuss the advantages/disadvantages of these systems, provide details of the data processing methodology and give a brief overview of the current status of the field as well as the vision for the next decade

    AIRES and RAPEAS on the Move

    Get PDF
    We report on this presentation an update on two closely related projects with relevance to LISN: AIRES (Argentina Ionospheric Radar Experiment Station) and RAPEAS (Spanish acronym for Argentina Network for Upper Atmosphere Research). AIRES' main goal is the deployment and long term operation of a face of the Afvance Modular Incoherent Scatter Radar (AMISR) close to La Plata city, in Argentina, where it is possible to perform ionospheric measurements of the geomagnetic conjugate point of the Arecibo Observatory in Puerto Rico. The initial construction of 16 AMISR panels and the infrastructure for the their deployment in Argentina have been initiated in March 2011, in the framework of a memorandum of understanding agreed between the U.S. National Science Foundation (NSF) and the Argentina National Council for Scientific and Technical Research (CONICET). In addition, in August 2011, CONICET created RAPEAS, which main objective is to maximize the benefits of AIRES as well as other networks and instruments in Argentina dedicated to Upper Atmosphere research. Over forty scientist and engineers from fifteen scientific and academic institutions are currently part of RAPE AS. Both, RAPEAS and AIRES will create a great synergy within the Argentina Upper Atmosphere community and will open new opportunities for international collaborations among which, the LISN project should play a relevant role

    Dynamics of Dust Particles Released from Oort Cloud Comets and Their Contribution to Radar Meteors

    Get PDF
    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D<10 um are blown out from the solar system by radiation pressure, while those with D>1 um have a very low Earth-impact probability. The intermediate particle sizes, D=100 um, represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a=1 AU. They are expected to produce meteors with radiants near the apex of the Earth's orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e=1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits

    Meteoroids: The Smallest Solar System Bodies

    Get PDF
    This volume is a compilation of articles reflecting the current state of knowledge on the physics, chemistry, astronomy, and aeronomy of small bodies in the solar system. The articles included here represent the most recent results in meteor, meteoroid, and related research fields and were presented May 24-28, 2010, in Breckenridge, Colorado, USA at Meteoroids 2010: An International Conference on Minor Bodies in the Solar System

    Diurnal Variation in Gravity Wave Activity at Low and Middle Latitudes

    Get PDF
    We employ a modified composite day extension of the Hocking (2005) analysis method to study gravity wave (GW) activity in the mesosphere and lower thermosphere using 4 meteor radars spanning latitudes from 7deg S to 53.6deg S. Diurnal and semidiurnal modulations were observed in GW variances over all sites. Semidiurnal modulation with downward phase propagation was observed at lower latitudes mainly near the equinoxes. Diurnal modulations occur mainly near solstice and, except for the zonal component at Cariri (7deg S), do not exhibit downward phase propagation. At a higher latitude (SAAMER, 53.6deg S) these modulations are only observed in the meridional component where we can observe diurnal variation from March to May, and semidiurnal, during January, February, October (above 88 km) and November. Some of these modulations with downward phase progression correlate well with wind shear. When the wind shear is well correlated with the maximum of the variances the diurnal tide has its largest amplitudes, i.e., near equinox. Correlations exhibiting variations with tidal phases suggest significant GW-tidal interactions that have different characters depending on the tidal components and possible mean wind shears. Modulations that do not exhibit phase variations could be indicative of diurnal variations in GW sources

    A Global Model of Meteoric Sodium

    Get PDF
    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere

    Modeling the Meteoroid Input Function at Mid-Latitude Using Meteor Observations by the MU Radar

    Get PDF
    The Meteoroid Input Function (MIF) model has been developed with the purpose of understanding the temporal and spatial variability of the meteoroid impact in the atmosphere. This model includes the assessment of potential observational biases, namely through the use of empirical measurements to characterize the minimum detectable radar cross-section (RCS) for the particular High Power Large Aperture (HPLA) radar utilized. This RCS sensitivity threshold allows for the characterization of the radar system s ability to detect particles at a given mass and velocity. The MIF has been shown to accurately predict the meteor detection rate of several HPLA radar systems, including the Arecibo Observatory (AO) and the Poker Flat Incoherent Scatter Radar (PFISR), as well as the seasonal and diurnal variations of the meteor flux at various geographic locations. In this paper, the MIF model is used to predict several properties of the meteors observed by the Middle and Upper atmosphere (MU) radar, including the distributions of meteor areal density, speed, and radiant location. This study offers new insight into the accuracy of the MIF, as it addresses the ability of the model to predict meteor observations at middle geographic latitudes and for a radar operating frequency in the low VHF band. Furthermore, the interferometry capability of the MU radar allows for the assessment of the model s ability to capture information about the fundamental input parameters of meteoroid source and speed. This paper demonstrates that the MIF is applicable to a wide range of HPLA radar instruments and increases the confidence of using the MIF as a global model, and it shows that the model accurately considers the speed and sporadic source distributions for the portion of the meteoroid population observable by MU

    Gravity Waves Generated by the Hunga Tonga-Hunga Ha‘Apai Volcanic Eruption and Their Global Propagation in The Mesosphere/Lower Thermosphere Observed by Meteor Radars And Modeled With the High-Altitude General Mechanistic Circulation Model

    Get PDF
    The Hunga Tonga-Hunga Ha‘apai volcano erupted on 15th January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanic- caused gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic General Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward propagating gravity wave packet with an observed phase speed of 240±5.7 m/s and a westward propagating gravity wave with an observed phase speed of 166.5 ±6.4 m/s. We identified these waves in the HIAMCM and obtained very good agreement of the observed phase speeds of 239.5±4.3 m/s and 162.2±6.1 m/s for the eastward and the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 minutes of the nominal value of 15th January 2022 04:15 UTC and localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano confirming our estimates to be realistic
    • …
    corecore