266 research outputs found

    The Roadside Chemical Control Program in Ohio

    Get PDF

    CLUSTERING A SERIES OF REPLICATED POLYPLOID GENE EXPRESSION EXPERIMENTS IN MAIZE

    Get PDF
    Ploidy level is defined as the number of individual sets of chromosomes contained in a single cell. Many important crop plants, such as potato, soybean and wheat are polyploid. Although it is widely known that polyploidy is a frequent evolutionary event, it is not fully understand why polyploids have been so successful. In this work cluster analysis is employed to study gene expression changes in a maize inbred line (B73) across a range of polyploidy levels. The B73 ploidy series includes monoploid, diploid, triploid and tetraploid plants and consists of biological and technical replicates as measured by microarray technology. An improved version of CORE (iCORE; improved Clustering of Repeat Expression) is presented to differentiate highly negatively correlated genes while taking advantage of the additional information that is provided by replication. The error information from the replicate experiments is utilized to cluster gene expression for both simulated and real ploidy-series data. Simulation results indicate that iCORE leads to an improvement in accuracy over both CORE and hierarchical clustering based on average gene expression only. When applied to the maize ploidy series, the iCORE results provide information that may aid in understanding of the effect of gene dose on gene expression in a ploidy series

    A Pilot Search for Gravitational Self-Lensing Binaries with the Zwicky Transient Facility

    Full text link
    Binary systems containing a compact object may exhibit periodic brightening episodes due to gravitational lensing as the compact object transits the companion star. Such "self-lensing" signatures have been detected before for white dwarf binaries. We attempt to use these signatures to identify detached stellar-mass neutron star and black hole binaries using data from the Zwicky Transient Facility (ZTF). We present a systematic search for self-lensing signals in Galactic binaries from a subset of high-cadence ZTF data taken in 2018. We identify 19 plausible candidates from the search, although because each candidate is observed to only brighten once, other origins such as stellar flares are more likely. We discuss prospects for more comprehensive future searches of the ZTF data.Comment: 12 pages. Submitted to the Open Journal of Astrophysic

    Characterizing the Cool KOIs. VI. H- and K-band Spectra of Kepler M Dwarf Planet-Candidate Hosts

    Get PDF
    We present H- and K-band spectra for late-type Kepler Objects of Interest (the "Cool KOIs"): low-mass stars with transiting-planet candidates discovered by NASA's Kepler Mission that are listed on the NASA Exoplanet Archive. We acquired spectra of 103 Cool KOIs and used the indices and calibrations of Rojas-Ayala et al. to determine their spectral types, stellar effective temperatures and metallicities, significantly augmenting previously published values. We interpolate our measured effective temperatures and metallicities onto evolutionary isochrones to determine stellar masses, radii, luminosities and distances, assuming the stars have settled onto the main-sequence. As a choice of isochrones, we use a new suite of Dartmouth predictions that reliably include mid-to-late M dwarf stars. We identify five M4V stars: KOI-961 (confirmed as Kepler 42), KOI-2704, KOI-2842, KOI-4290, and the secondary component to visual binary KOI-1725, which we call KOI-1725 B. We also identify a peculiar star, KOI-3497, which has a Na and Ca lines consistent with a dwarf star but CO lines consistent with a giant. Visible-wavelength adaptive optics imaging reveals two objects within a 1 arc second diameter; however, the objects' colors are peculiar. The spectra and properties presented in this paper serve as a resource for prioritizing follow-up observations and planet validation efforts for the Cool KOIs, and are all available for download online using the "data behind the figure" feature.Comment: Accepted for publication in the Astrophysical Journal Supplement Series (ApJS). Data and table are available in the sourc

    Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    Get PDF
    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation

    A new class of large-amplitude radial-mode hot subdwarf pulsators

    Full text link
    Using high-cadence observations from the Zwicky Transient Facility at low Galactic latitudes, we have discovered a new class of pulsating, hot compact stars. We have found four candidates, exhibiting blue colors (g − r ≤ −0.1 mag), pulsation amplitudes of >5%, and pulsation periods of 200–475 s. Fourier transforms of the light curves show only one dominant frequency. Phase-resolved spectroscopy for three objects reveals significant radial velocity, T eff, and log(g) variations over the pulsation cycle, which are consistent with large-amplitude radial oscillations. The mean T eff and log(g) for these stars are consistent with hot subdwarf B (sdB) effective temperatures and surface gravities. We calculate evolutionary tracks using MESA and adiabatic pulsations using GYRE for low-mass, helium-core pre-white dwarfs (pre-WDs) and low-mass helium-burning stars. Comparison of low-order radial oscillation mode periods with the observed pulsation periods show better agreement with the pre-WD models. Therefore, we suggest that these new pulsators and blue large-amplitude pulsators (BLAPs) could be members of the same class of pulsators, composed of young ≈0.25–0.35 M ⊙ helium-core pre-WDs.Published versio

    Effectiveness of calf muscle stretching for the short-term treatment of plantar heel pain: a randomised trial

    Get PDF
    BACKGROUND: Plantar heel pain is one of the most common musculoskeletal disorders of the foot and ankle. Treatment of the condition is usually conservative, however the effectiveness of many treatments frequently used in clinical practice, including stretching, has not been established. We performed a participant-blinded randomised trial to assess the effectiveness of calf muscle stretching, a commonly used short-term treatment for plantar heel pain. METHODS: Ninety-two participants with plantar heel pain were recruited from the general public between April and June 2005. Participants were randomly allocated to an intervention group that were prescribed calf muscle stretches and sham ultrasound (n = 46) or a control group who received sham ultrasound alone (n = 46). The intervention period was two weeks. No participants were lost to follow-up. Primary outcome measures were 'first-step' pain (measured on a 100 mm Visual Analogue Scale) and the Foot Health Status Questionnaire domains of foot pain, foot function and general foot health. RESULTS: Both treatment groups improved over the two week period of follow-up but there were no statistically significant differences in improvement between groups for any of the measured outcomes. For example, the mean improvement for 'first-step' pain (0–100 mm) was -19.8 mm in the stretching group and -13.2 mm in the control group (adjusted mean difference between groups -7.9 mm; 95% CI -18.3 to 2.6). For foot function (0–100 scale), the stretching group improved 16.2 points and the control group improved 8.3 points (adjusted mean difference between groups 7.3; 95% CI -0.1 to 14.8). Ten participants in the stretching group experienced an adverse event, however most events were mild to moderate and short-lived. CONCLUSION: When used for the short-term treatment of plantar heel pain, a two-week stretching program provides no statistically significant benefit in 'first-step' pain, foot pain, foot function or general foot health compared to not stretching

    Effectiveness of low-Dye taping for the short-term treatment of plantar heel pain: a randomised trial

    Get PDF
    BACKGROUND: Plantar heel pain is one of the most common musculoskeletal disorders of the foot and ankle. Treatment of the condition is usually conservative, however the effectiveness of many treatments frequently used in clinical practice, including supportive taping of the foot, has not been established. We performed a participant-blinded randomised trial to assess the effectiveness of low-Dye taping, a commonly used short-term treatment for plantar heel pain. METHODS: Ninety-two participants with plantar heel pain (mean age 50 ± 14 years; mean body mass index 30 ± 6; and median self-reported duration of symptoms 10 months, range of 2 to 240 months) were recruited from the general public between February and June 2005. Participants were randomly allocated to (i) low-Dye taping and sham ultrasound or (ii) sham ultrasound alone. The duration of follow-up for each participant was one week. No participants were lost to follow-up. Outcome measures included 'first-step' pain (measured on a 100 mm Visual Analogue Scale) and the Foot Health Status Questionnaire domains of foot pain, foot function and general foot health. RESULTS: Participants treated with low-Dye taping reported a small improvement in 'first-step' pain after one week of treatment compared to those who did not receive taping. The estimate of effect on 'first-step' pain favoured the low-Dye tape (ANCOVA adjusted mean difference -12.3 mm; 95% CI -22.4 to -2.2; P = 0.017). There were no other statistically significant differences between groups. Thirteen participants in the taping group experienced an adverse event however most were mild to moderate and short-lived. CONCLUSION: When used for the short-term treatment of plantar heel pain, low-Dye taping provides a small improvement in 'first-step' pain compared with a sham intervention after a one-week period
    • …
    corecore