23 research outputs found

    Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites

    Get PDF
    This volume contains abstracts of papers that have been accepted for presentation at the Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites, October 16-18, 1996, in Houston, Texas

    Trace element zoning in pelitic garnet of the Black Hills, South Dakota

    Get PDF
    ABSTRACT Trace element (REE, Cr, Ti, Y, Y, and Zr) analysis of garnet from the garnet, staurolite, and lower sillimanite zones of an aluminous schist of the Black Hills, South Dakota, indicates that REE zoning varies as a function of grade. Garnet-zone garnet has high concentrations of REEs, Cr, Ti, Y, Y, and Zr in the cores and low concentrations in the rims. Profiles of heavy REEs contain inflections between the cores and rims, which are approximately symmetric about the cores. Staurolite-zone garnet contains cores enriched with Y and heavy REEs, which decrease toward the rim and increase again at the rim edges but to lower concentrations than in the cores. Cr, Y, Ti, Zr, and light REE zoning is less pronounced than heavy REE zoning and is less symmetric about the garnet cores. Almandine-rich garnet of the lower sillimanite zone displays no major element zonation. Trace element (Ti, Cr, Y, and Zr) concentrations are minimal, and the zoning is irregular and not symmetric about the garnet cores. Garnet from all three zones has core-to-rim Fe/(Fe + Mg) profiles that suggest garnet growth was uninterrupted with respect to major element components and that Mn zoning formed by a fractionation process. Analysis of trace element zoning in this garnet reveals that the major element zoning was relatively unaffected by volume-diffusion reequilibration. Trace element zonation of all samples of garnet is best explained by a fractionation mechanism in conjunction with limited intergranular diffusion and changing partition coefficients during garnet growth. Heavy REE partitioning is especially dependent on the major element composition of garnet. This research complements previous research by others on the use of trace elements as metamorphic petrogenetic indicators, which demonstrated the importance of bulk-rock composition and phase assemblage on trace element partitioning

    The Cr Redox Record of fO2 Variation in Angrites. Evidence for Redox Conditions of Angrite Petrogenesis and Parent Body

    Get PDF
    Angrites represent some of the earliest stages of planetesimal differentiation. Not surprisingly, there is no simple petrogenetic model for their origin. Petrogenesis has been linked to both magmatic and impact processes. Studies demonstrated that melting of chondritic material (e.g. CM, CV) at redox conditions where pure iron metal is unstable (e.g., IW+1 to IW+2) produced angrite-like melts. Alternatively, angrites were produced at more reducing conditions (<IW) with their exotic melt compositions resulting from carbonates in the source or from nebular condensation. Clearly, understanding what role fO2 plays in producing angrite magmas is critical for deciphering their petrogenesis and extending our understanding of primordial melting of asteroids. Calculations for the fO2 conditions of angrite crystallization are limited, and only preliminary attempts been made to understand the changes in fO2 that occurred during petrogenesis. Many of the angrites have phase assemblages which provide conflicting signals about redox conditions during crystallization (e.g., Fe metal and a Fe-Ti oxide with potential Fe3+. There have been several estimates of fO2 for angrites. Most notably, experiments examined the variation of DEu/DGd with fO2, between plagioclase and fassaitic pyroxene in equilibrium with an angrite melt composition. They used their observations to estimate the fO2 of crystallization to be approximately IW+0.6 for angrite LEW 86010. This estimate is only a "snapshot" of fO2 conditions during co-crystallization of plagioclase and pyroxene. Preliminary XANES analyses of V redox state in pyroxenes from D'Orbigny reported changes in fO2 from IW-0.7 during early pyroxene crystallization to IW+0.5 during latter episodes of pyroxene crystallization [15]. As this was a preliminary report, it presented limited information concerning the effects of pyroxene orientation and composition on the V valence measurements, and the effect of melt composition on valence and partitioning behavior of V. A closer examination of fO2 as recorded by Cr valence state in olivine will allow us to test models for primordial melting of chondritic material to produce the angrite parent melts. Here, we report the our initial stages of examining the origin and conditions of primordial melting on the angrite parent body and test some of the above models by integrating an experimental study of Cr and V valence partitioning between olivine [OL] and an angrite melt, with micro-scale determinations of Cr and V oxidation state in OL in selected "volcanic" angrites

    Briefing notes, astronaut reunion

    Get PDF
    The materials on the following pages are from viewgraphs and information presented at a reunion of former astronauts held at the Johnson Space Center in August 1978. These briefing notes do not constitute a formal publication and should not be cited as such.Based on briefing materials prepared by: Prof. J. W. Head, III, Brown University, Dr. T. R. McGetchin, LPI, Prof. J. J. Papike, SUNY, Stony Broo

    The Mineralogical Record of Oxygen Fugacity Variation and Alteration in Northwest Africa 8159: Evidence for Interaction Between a Mantle Derived Martian Basalt and a Crustal Component(s)

    Get PDF
    A prominent geochemical feature of basaltic magmatism on Mars is the large range in initial Sr isotopic ratios (approx. 0.702 - 0.724) and initial epsilon-Nd values (approx. -10 to greater than +50). Within this range, the shergottites fall into three discreet subgroups. These subgroups have distinct bulk rock REE patterns, mineral chemistries (i.e. phosphate REE patterns, Ni, Co, V in olivine), oxygen fugacity of crystallization, and stable isotopes, such as O. In contrast, nakhlites and chassignites have depleted epsilon-Nd values (greater than or equal to +15), have REE patterns that are light REE enriched, and appear to have crystallized near the FMQ buffer. The characteristics of these various martian basalts have been linked to different reservoirs in the martian crust and mantle, and their interactions during the petrogenesis of these magmas. These observations pose interesting interpretive challenges to our understanding of the conditions of the martian mantle (e.g. oxygen fugacity) and the interaction of mantle derived magmas with the martian crust and surface. Martian meteorite NWA 8159 is a unique fine-grained augite basalt derived from a highly depleted mantle source as reflected in its initial epsilon-Nd value, contains a pronounced light REE depleted pattern, and crystallized presumably under very oxidizing conditions. Although considerably older than both shergottites and nahklites, it has been petrogenetically linked to both styles of martian magmatism. These unique characteristics of NWA 8159 may provide an additional perspective for deciphering the petrogenesis of martian basalts and the nature of the crust of Mars

    Mars Sample Handling and Requirements Panel (MSHARP)

    Get PDF
    In anticipation of the return of samples from Mars toward the end of the first decade of the next century, NASA's Office of Space Sciences chartered a panel to examine how Mars samples should be handled. The panel was to make recommendations in three areas: (1) sample collection and transport back to Earth; (2) certification of the samples as nonhazardous; and (3) sample receiving, curation, and distribution. This report summarizes the findings of that panel. The samples should be treated as hazardous until proven otherwise. They are to be sealed within a canister on Mars, and the canister is not to be opened until within a Biosafety Hazard Level 4 (BSL-4) containment facility here on Earth. This facility must also meet or exceed the cleanliness requirements of the Johnson Space Center (JSC) facility for curation of extraterrestrial materials. A containment facility meeting both these requirements does not yet exist. Hazard assessment and life detection experiments are to be done at the containment facility, while geochemical characterization is being performed on a sterilized subset of the samples released to the science community. When and if the samples are proven harmless, they are to be transferred to a curation facility, such as that at JSC
    corecore