45 research outputs found

    Deltaic and Coastal Sediments as Recorders of Mediterranean Regional Climate and Human Impact Over the Past Three Millennia

    Get PDF
    This work was financially supported by the MISTRALS/PaleoMex program and by the Project of Strategic Interest NextData PNR 2011–2013 (www. nextdataproject.it). Lionel Savignan is thanked for his participation in the biomarker analysis. Radiocarbon datings for core KESC9-14 have been funded by Institut Carnot Ifremer-EDROME (grant A0811101). We also thank the Holocene North-Atlantic Gyres and Mediterranean Overturning dynamic through Climate Changes (HAMOC) project for financial support. The biomarker data presented here are available in the supporting information.Peer reviewedPublisher PD

    The 4.2 ka BP Event in the Mediterranean region: an overview

    Get PDF
    The Mediterranean region and the Levant have returned some of the clearest evidence of a climatically dry period occurring around 4200 years ago. However, some regional evidence is controversial and contradictory, and issues remain regarding timing, progression, and regional articulation of this event. In this paper, we review the evidence from selected proxies (sea-surface temperature, precipitation, and temperature reconstructed from pollen, δ18O on speleothems, and δ18O on lacustrine carbonate) over the Mediterranean Basin to infer possible regional climate patterns during the interval between 4.3 and 3.8 ka. The values and limitations of these proxies are discussed, and their potential for furnishing information on seasonality is also explored. Despite the chronological uncertainties, which are the main limitations for disentangling details of the climatic conditions, the data suggest that winter over the Mediterranean involved drier conditions, in addition to already dry summers. However, some exceptions to this prevail - where wetter conditions seem to have persisted - suggesting regional heterogeneity in climate patterns. Temperature data, even if sparse, also suggest a cooling anomaly, even if this is not uniform. The most common paradigm to interpret the precipitation regime in the Mediterranean - a North Atlantic Oscillation-like pattern - is not completely satisfactory to interpret the selected data

    The spatiotemporal pattern of the Bond 4 event (5.2 ka) : a global data-based review

    No full text
    International audienceThe Bond 4 event starting at 7000 yr BP and culminating around 5200 yr BP corresponds to the largest (in magnitude and duration) invasion of drifting ice across the subpolar North Atlantic during the Holocene (Bond et al., 2001). While several studies have focused on other events of the Holocene, such as the 8.2 ka, the 4.2 ka and the Little Ice Age, little is known about the mid-Holocene 5.2 ka event. Here we present a global compilation of carefully selected high-resolution time series of sea surface temperature (SST; N=58) and humidity/precipitation (N=35) to characterize in space and time the 5.2 ka event pattern.The SST records show the occurrence of cold conditions in the North Atlantic, western Mediterranean as well as in the western Pacific Ocean. However, they indicate warming in the high latitude North Atlantic, the southeastern Atlantic, the eastern Mediterranean and the Arabian and Red seas. Humidity/precipitation data (mainly based on oxygen  isotope records in speleothems) indicate dry conditions in the northern hemisphere subtropical and mid latitude regions of all continents. Based on these data and others from marine and lacustrine records in tropical regions, we suggest a possible weakening of monsoon systems, i.e. in Africa, North America, southwest Asia as well as East Asia. Precipitation reduced as well in most regions of the Mediterranean (i.e. except Iberian Peninsula). All together these data indicate severe climate conditions during the 5.2 ka event.Based on the recent compilation of sortable silt from the high latitude North Atlantic of McCave and Andrews (2019), the 5.2 ka event coincides with a decrease of the main Shallow and bottom ocean flows (i.e. North Iceland Irminger Current, East Greenland Current, Iceland-Scotland over flow) probably reflecting a weakening of the North Atlantic Deep Water formation. This event also corresponds to the occurrence of several solar minima as well as several tropical volcanic mega-eruptions that could have triggered a global colder and drier climate (Steinhilber et al., 2012; Kobashi et al., 2017

    Holocene climate variability in the North-Western Mediterranean Sea (Gulf of Lions)

    Get PDF
    International audienceSea surface temperatures (SSTs) and land-derived input time series were generated from the Gulf of Lions inner-shelf sediments (NW Mediterranean Sea) using alkenones and high-molecular-weight odd-carbon numbered n-alkanes (TERR-alkanes), respectively. The SST record depicts three main phases: a warm Early Holocene (∼ 18 ± 0.4 °C) followed by a cooling of ∼ 3 °C between 7000 and 1000 BP, and rapid warming from ∼ 1850 AD onwards. Several superimposed multi-decadal to centennial-scale cold events of ∼ 1 °C amplitude were also identified. TERR-alkanes were quantified in the same sedimentary horizons to identify periods of high Rhone River discharge and compare them with regional flood reconstructions. Concentrations show a broad increase from the Early Holocene towards the present with a pronounced minimum around 2500 BP and large fluctuations during the Late Holocene. Comparison with Holocene flood activity reconstructions across the Alps region suggests that sediments of the inner shelf originate mainly from the Upper Rhone River catchment basin and that they are primarily delivered during positive North Atlantic Oscillation (NAO)

    Influence of the North Atlantic subpolar gyre circulation on the 4.2 ka BP event

    Get PDF
    International audienceThe 4.2 ka BP event, spanning from ca 4200 to 3900 cal BP, has been documented in numerous archaeological data and continental archives across the Northern Hemisphere as an abrupt shift to dry and cold climate. However, data on synchronous ocean circulation changes are notably lacking, thus preventing us from getting a full insight into the physical mechanisms responsible for this climate deterioration. Here, we present two high-resolution (5-20 years) sea surface temperature (SST) records from the subpolar gyre and off north Iceland in the vicinity of the polar front obtained from alkenone paleo-thermometry and compare them with proxy data from the western Mediterranean Sea to gain information on regional temperature and precipitation patterns. Our results are evidence of a temperature dipole pattern which, combined with other paleo-oceanographic records of the North Atlantic, suggests a weakening of the subpolar gyre possibly associated with atmospheric blocked regimes

    Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era

    No full text
    International audienceThis study investigates the multidecadal-scale variability of sea surface temperatures (SSTs) in the convection region of the Gulf of Lion (NW Mediterranean Sea) over the full past 2000 yr (Common Era) using alkenone biomarkers. Our data show colder SSTs by 1.7 °C over most of the first millennium (200–800 AD) and by 1.3 °C during the Little Ice Age (LIA; 1400–1850 AD) than the 20th century mean (17.9 °C). Although on average warmer, those of the Medieval Climate Anomaly (MCA) (1000–1200 AD) were lower by 1 °C. We found a mean SST warming of 2 °C/100 yr over the last century in close agreement with the 0.22 and 0.26 °C/decade values calculated for the western Mediterranean Sea from in situ and satellite data, respectively. Our results also reveal strongly fluctuating SSTs characterized by cold extremes followed by abrupt warming during the LIA. We suggest that the coldest decades of the LIA were likely caused by prevailing negative EA states and associated anticyclone blocking over the North Atlantic resulting in cold continental northeasterly winds to blow over Western Europe and the Mediterranean region

    Trends and centennial-scale variability of surface water temperatures in the North Atlantic during the Holocene

    No full text
    International audienceTwo sediment cores retrieved off North Iceland (western Nordic Seas) and on the eastern flank of Reykjanes Ridge (Iceland Basin) were analyzed to generate high-resolution alkenone-derived sea surface temperature (SST) records to investigate North Atlantic Ocean circulation changes during the Holocene. Early Holocene SSTs off North Iceland were unstable (10+1°C) and 3°C warmer than today reflecting active northward heat transport of the Atlantic Meridional Overturning Circulation (AMOC) interrupted by intermittent Polar Waters incursions onto the North Icelandic shelf. The Holocene thermal optimum occurred synchronously East of Reykjanes Ridge, with a mean value of 11.5°C (+0.5°C) similar to today, consistent with a sustained influence of AMOC. Both records indicate that the circulation across the North Atlantic intensified between 8000 and 7000 yr BP. Thereafter, SSTs in the two basin sites broadly depict opposing trends and centennial-scale oscillations and a notable cooling at ~5300 yr BP that coincides with Bond 4 event and the temporary collapse of the dee-water circulation. From 2500 yr BP onwards, SSTs in the Iceland basin and the western Nordic Seas diverge leading to a marked cooling/warming dipole resulting in a temperature difference today of 4.5°C. We show that SST trends and centennial-scale variability reflect variations of the subpolar gyre (SPG) circulation linked to drifting ice events and convection changes in the Labrador and Nordic Seas
    corecore