6 research outputs found

    Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold <it>Dictyostelium discoideum</it>, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine.</p> <p>Result</p> <p>Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose <it>D. discoideum </it>to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (<it>pde4<sup>- </sup></it>and <it>pdiA<sup>-</sup></it>) and colony size (<it>smlA<sup>- </sup></it>and <it>ctnA<sup>-</sup></it>) and restore their parental aggregate size.</p> <p>Conclusion</p> <p>Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation.</p

    Regulation of multiple tip formation by caffeine in cellular slime molds

    Get PDF
    Background: The multicellular slug in Dictyostelium has a single tip that acts as an organising centre patterning the rest of the slug. High adenosine levels at the tip are believed to be responsible for this tip dominance and the adenosine antagonist, caffeine overrides this dominance promoting multiple tip formation. Results: Caffeine induced multiple tip effect is conserved in all the Dictyostelids tested. Two key components of cAMP relay namely, cAMP phosphodiesterase (Pde4) and adenyl cyclase-A (AcaA) levels get reduced during secondary tip formation in Dictyostelium discoideum. Pharmacological inhibition of cAMP phosphodiesterase also resulted in multiple tips. Caffeine reduces cAMP levels by 16.4, 2.34, 4.71 and 6.30 folds, respectively in D. discoideum, D. aureostipes, D. minutum and Polysphondylium pallidum. We propose that altered cAMP levels, perturbed cAMP gradient and impaired signalling may be the critical factors for the origin of multiple tips in other Dictyostelids as well. In the presence of caffeine, slug cell movement gets impaired and restricted. The cell type specific markers, ecmA (prestalk) and pspA (prespore) cells are not equally contributing during additional tip formation. During additional tip emergence, prespore cells transdifferentiate to compensate the loss of prestalk cells. Conclusion: Caffeine decreases adenyl cyclase–A (AcaA) levels and as a consequence low cAMP is synthesised altering the gradient. Further if cAMP phosphodiesterase (Pde4) levels go down in the presence of caffeine, the cAMP gradient breaks down. When there is no cAMP gradient, directional movement is inhibited and might favour re-differentiation of prespore to prestalk cells

    The thyroxine inactivating gene, type III deiodinase, suppresses multiple signaling centers in Dictyostelium discoideum

    Get PDF
    Thyroxine deiodinases, the enzymes that regulate thyroxine metabolism, are essential for vertebrate growth and development. In the genome of Dictyostelium discoideum, a single intronless gene (dio3) encoding type III thyroxine 5′ deiodinase is present. The amino acid sequence of D. discoideum Dio3 shares 37% identity with human T4 deiodinase and is a member of the thioredoxin reductase superfamily. dio3 is expressed throughout growth and development and by generating a knockout of dio3, we have examined the role of thyroxine 5′ deiodinase in D. discoideum. dio3− had multiple defects that affected growth, timing of development, aggregate size, cell streaming, and cell-type differentiation. A prominent phenotype of dio3− was the breaking of late aggregates into small signaling centers, each forming a fruiting body of its own. cAMP levels, its relay, photo- and chemo-taxis were also defective in dio3−. Quantitative RT-PCR analyses suggested that expression levels of genes encoding adenylyl cyclase A (acaA), cAMP-receptor A (carA) and cAMP-phosphodiesterases were reduced. There was a significant reduction in the expression of CadA and CsaA, which are involved in cell–cell adhesion. The dio3− slugs had prestalk identity, with pronounced prestalk marker ecmA expression. Thus, Dio3 seems to have roles in mediating cAMP synthesis/relay, cell–cell adhesion and slug patterning. The phenotype of dio3− suggests that Dio3 may prevent the formation of multiple signaling centers during D. discoideum development. This is the first report of a gene involved in thyroxine metabolism that is also involved in growth and development in a lower eukaryote
    corecore