374 research outputs found

    Composite study of aerosol export events from East Asia and North America

    Get PDF
    We use satellite observations of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectrometer (MODIS) together with the GEOS-Chem global chemical transport model to contrast export of aerosols from East Asia and North America during 2004–2010. The GEOS-Chem model reproduces the spatial distribution and temporal variations of Asian aerosol outflow generally well, although a low bias (−30%) is found in the model fine mode AOD, particularly during summer. We use the model to identify 244 aerosol pollution export events from E. Asia and 251 export events from N. America over our 7-year study period. When these events are composited by season, we find that the AOD in the outflow is enhanced by 50–100% relative to seasonal mean values. The composite Asian plume splits into one branch going poleward to the Arctic in 3–4 days, with the other crossing the Pacific Ocean in 6–8 days. A fraction of the aerosols is trapped in the subtropical Pacific High during spring and summer. The N. American plume travels to the northeast Atlantic, reaching Europe after 4–5 days. Part of the composite plume turns anticyclonically in the Azores High, where it slowly decays. Both the Asian and N. American export events are favored by a dipole structure in sea-level pressure anomalies, associated with mid-latitude cyclone activity over the respective source regions. This dipole structure during outflow events is a strong feature for all seasons except summer, when convection becomes more important. The observed AOD in the E. Asian outflow exhibits stronger seasonality, with a spring maximum, than the N. American outflow, with a broad spring/summer maximum. The large spring AOD in the Asian outflow is the result of enhanced sulfate and dust aerosol concentrations, but is also due to a larger export efficiency of sulfate and SO<sub>2</sub> from the Asian boundary layer relative to the N. American boundary layer. While the N. American sulfate outflow is mostly found in the lower troposphere (1–3 km altitude), the Asian sulfate outflow occurs at higher altitudes (2–6 km). In the Asian outflow 42–59% of the sulfate column is present above 2 km altitude, with only 24–35% in the N. American outflow. We link this to the factor of 2–5 lower precipitation in the warm conveyor belts (WCB) of midlatitude cyclones over E. Asia compared to N. America. This relative lack of precipitation makes Asian WCB very efficient for injecting aerosols in the middle troposphere

    Using CALIOP to constrain blowing snow emissions of sea salt aerosols over Arctic and Antarctic sea ice

    Get PDF
    Sea salt aerosols (SSA) produced on sea ice surfaces by blowing snow events or the lifting of frost flower crystals have been suggested as important sources of SSA during winter over polar regions. The magnitude and relative contribution of blowing snow and frost flower SSA sources, however, remain uncertain. In this study, we use 2007–2009 aerosol extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the GEOS-Chem global chemical transport model to constrain sources of SSA over Arctic and Antarctic sea ice. CALIOP retrievals show elevated levels of aerosol extinction coefficients (10–20&thinsp;Mm−1) in the lower troposphere (0–2&thinsp;km) over polar regions during cold months. The standard GEOS-Chem model underestimates the CALIOP extinction coefficients by 50&thinsp;%–70&thinsp;%. Adding frost flower emissions of SSA fails to explain the CALIOP observations. With blowing snow SSA emissions, the model captures the overall spatial and seasonal variation of CALIOP aerosol extinction coefficients over the polar regions but underestimates aerosol extinction over Arctic sea ice in fall to early winter and overestimates winter-to-spring extinction over Antarctic sea ice. We infer the monthly surface snow salinity on first-year sea ice required to minimize the discrepancy between CALIOP extinction coefficients and the GEOS-Chem simulation. The empirically derived snow salinity shows a decreasing trend between fall and spring. The optimized blowing snow model with inferred snow salinities generally agrees with CALIOP extinction coefficients to within 10&thinsp;% over sea ice but underestimates them over the regions where frost flowers are expected to have a large influence. Frost flowers could thus contribute indirectly to SSA production by increasing the local surface snow salinity and, therefore, the SSA production from blowing snow. We carry out a case study of an Arctic blowing snow SSA feature predicted by GEOS-Chem and sampled by CALIOP. Using back trajectories, we link this feature to a blowing snow event that occurred 2 days earlier over first-year sea ice and was also detected by CALIOP.</p

    Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and O3 in the Arctic

    Get PDF
    We use the GEOS-Chem chemical transport model to examine the influence of bromine release from blowingsnow sea salt aerosol (SSA) on springtime bromine activation and O3 depletion events (ODEs) in the Arctic lower troposphere. We evaluate our simulation against observations of tropospheric BrO vertical column densities (VCDtropo) from the GOME-2 (second Global Ozone Monitoring Experiment) and Ozone Monitoring Instrument (OMI) spaceborne instruments for 3 years (2007-2009), as well as against surface observations of O3. We conduct a simulation with blowingsnow SSA emissions from first-year sea ice (FYI; with a surface snow salinity of 0.1 psu) and multi-year sea ice (MYI; with a surface snow salinity of 0.05 psu), assuming a factor of 5 bromide enrichment of surface snow relative to seawater. This simulation captures the magnitude of observed March-April GOME-2 and OMI VCDtropo to within 17 %, as well as their spatiotemporal variability (r D 0:76-0.85). Many of the large-scale bromine explosions are successfully reproduced, with the exception of events in May, which are absent or systematically underpredicted in the model. If we assume a lower salinity on MYI (0.01 psu), some of the bromine explosions events observed over MYI are not captured, suggesting that blowing snow over MYI is an important source of bromine activation. We find that the modeled atmospheric deposition onto snow-covered sea ice becomes highly enriched in bromide, increasing from enrichment factors of ~ 5 in September-February to 10-60 in May, consistent with composition observations of freshly fallen snow. We propose that this progressive enrichment in deposition could enable blowing-snow-induced halogen activation to propagate into May and might explain our late-spring underestimate in VCDtropo. We estimate that the atmospheric deposition of SSA could increase snow salinity by up to 0.04 psu between February and April, which could be an important source of salinity for surface snow on MYI as well as FYI covered by deep snowpack. Inclusion of halogen release from blowing-snow SSA in our simulations decreases monthly mean Arctic surface O3 by 4-8 ppbv (15 %-30 %) in March and 8-14 ppbv (30 %-40 %) in April. We reproduce a transport event of depleted O3 Arctic air down to 40 N observed at many sub-Arctic surface sites in early April 2007. While our simulation captures 25 %-40 % of the ODEs observed at coastal Arctic surface sites, it underestimates the magnitude of many of these events and entirely misses 60 %-75 % of ODEs. This difficulty in reproducing observed surface ODEs could be related to the coarse horizontal resolution of the model, the known biases in simulating Arctic boundary layer exchange processes, the lack of detailed chlorine chemistry, and/or the fact that we did not include direct halogen activation by snowpack chemistry

    Convective injection and photochemical decay of peroxides in the tropical upper troposphere: Methyl iodide as a tracer of marine convection

    Get PDF
    The convective injection and subsequent fate of the peroxides H2O2 and CH3OOH in the upper troposphere is investigated using aircraft observations from the NASA Pacific Exploratory Mission‐Tropics A (PEM‐Tropics A) over the South Pacific up to 12 km altitude. Fresh convective outflow is identified by high CH3I concentrations; CH3I is an excellent tracer of marine convection because of its relatively uniform marine boundary layer concentration, relatively well‐defined atmospheric lifetime against photolysis, and high sensitivity of measurement. We find that mixing ratios of CH3OOH in convective outflow at 8–12 km altitude are enhanced on average by a factor of 6 relative to background, while mixing ratios of H2O2 are enhanced by less than a factor of 2. The scavenging efficiency of H2O2 in the precipitation associated with deep convection is estimated to be 55–70%. Scavenging of CH3OOH is negligible. Photolysis of convected peroxides is a major source of the HOx radical family (OH + peroxy radicals) in convective outflow. The timescale for decay of the convective enhancement of peroxides in the upper troposphere is determined using CH3I as a chemical clock and is interpreted using photochemical model calculations. Decline of CH3OOH takes place on a timescale of a 1–2 days, but the resulting HOx converts to H2O2, so H2O2 mixing ratios show no decline for ∌5 days following a convective event. The perturbation to HOx at 8–12 km altitude from deep convective injection of peroxides decays on a timescale of 2–3 days for the PEM‐Tropics A conditions
    • 

    corecore