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Received: 30 July 2012 – Published in Atmos. Chem. Phys. Discuss.: 28 August 2012
Revised: 25 December 2012 – Accepted: 9 January 2013 – Published: 1 February 2013

Abstract. We use satellite observations of aerosol optical
depth (AOD) from the Moderate Resolution Imaging Spec-
trometer (MODIS) together with the GEOS-Chem global
chemical transport model to contrast export of aerosols from
East Asia and North America during 2004–2010. The GEOS-
Chem model reproduces the spatial distribution and temporal
variations of Asian aerosol outflow generally well, although
a low bias (−30 %) is found in the model fine mode AOD,
particularly during summer. We use the model to identify
244 aerosol pollution export events from E. Asia and 251
export events from N. America over our 7-year study pe-
riod. When these events are composited by season, we find
that the AOD in the outflow is enhanced by 50–100 % rel-
ative to seasonal mean values. The composite Asian plume
splits into one branch going poleward to the Arctic in 3–4
days, with the other crossing the Pacific Ocean in 6–8 days.
A fraction of the aerosols is trapped in the subtropical Pacific
High during spring and summer. The N. American plume
travels to the northeast Atlantic, reaching Europe after 4–
5 days. Part of the composite plume turns anticyclonically
in the Azores High, where it slowly decays. Both the Asian
and N. American export events are favored by a dipole struc-
ture in sea-level pressure anomalies, associated with mid-
latitude cyclone activity over the respective source regions.
This dipole structure during outflow events is a strong feature
for all seasons except summer, when convection becomes
more important. The observed AOD in the E. Asian outflow
exhibits stronger seasonality, with a spring maximum, than
the N. American outflow, with a broad spring/summer max-
imum. The large spring AOD in the Asian outflow is the re-
sult of enhanced sulfate and dust aerosol concentrations, but
is also due to a larger export efficiency of sulfate and SO2
from the Asian boundary layer relative to the N. American

boundary layer. While the N. American sulfate outflow is
mostly found in the lower troposphere (1–3 km altitude), the
Asian sulfate outflow occurs at higher altitudes (2–6 km). In
the Asian outflow 42–59 % of the sulfate column is present
above 2 km altitude, with only 24–35 % in the N. American
outflow. We link this to the factor of 2–5 lower precipitation
in the warm conveyor belts (WCB) of midlatitude cyclones
over E. Asia compared to N. America. This relative lack of
precipitation makes Asian WCB very efficient for injecting
aerosols in the middle troposphere.

1 Introduction

The long-range transport of aerosols from East Asia to the
North Pacific Ocean and the North American west coast
has been observed for several decades (e.g., Prospero, 1979;
Duce et al., 1980; Andreae et al., 1988; Prospero et al., 2003;
Jaffe et al., 1999, 2003; Arimoto et al., 1996, 1997; Husar
et al., 2001; Clarke et al., 2001; VanCuren, 2003; Bertschi et
al., 2004; Bertschi and Jaffe, 2005; Heald et al., 2006a; McK-
endry et al., 2008). Intensive field campaigns over the west-
ern and eastern Pacific Ocean have shown that Asian aerosols
are a complex mixture of dust and anthropogenic particles,
and contain significant levels of absorbing soot and organic
carbon as a result of extensive coal burning and biomass
burning (e.g., Hoell et al., 1996; Hoell et al., 1997; Jacob
et al., 2003; Huebert et al., 2003; Parrish et al., 2004; Singh
et al., 2009). Asian pollution layers intercepted 3–10 days
downwind over the N. Pacific Ocean have elevated sulfate
aerosol levels but reduced organics compared to measure-
ments near the Asian continent (Andreae et al., 1988; Peltier
et al., 2008; Dunlea et al., 2009; van Donkelaar et al., 2008).
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This is consistent with fast formation of sulfate and organic
aerosols within 1–2 days of emission over the Asian conti-
nent, followed by washout during lofting, and then slower
conversion of the modestly-soluble anthropogenic SO2 to
sulfate aerosols during transport aloft (Brock et al., 2004).
Export of Asian pollutants is strongest in spring, when the
Asian aerosol plumes can be transported across the N. Pa-
cific Ocean within a few days, but also occurs in other sea-
sons (e.g., Liang et al., 2004; Holzer et al., 2005).

There is also significant observational evidence for long-
range transport of N. American aerosols to the N. At-
lantic and Europe. Polluted plumes of N. American origin
have been sampled at several remote sites over the N. At-
lantic Ocean (e.g., Parrish et al., 1998; Savoie et al., 2002;
Benkovitz et al., 2003; Huntrieser et al., 2005; Millet et al.,
2006; Owen et al., 2006). Aerosols in the N. American out-
flow are dominated by sulfate, with a significant contribu-
tion from organic carbon aerosols, especially during summer
as a result of fires and biogenic precursor emissions (e.g.,
Millet et al., 2006; Murphy et al., 2006; Heald et al., 2006b;
Goldstein et al., 2009). Aerosols from boreal forest fires over
Alaska and Canada can be transported to Europe, influencing
both the free troposphere and surface (Forster et al., 2001;
Wandinger et al., 2004).

Lofting in the Warm Conveyor Belt (WCB) of midlatitude
cyclones followed by rapid transport in the strong westerly
winds is considered to be the major mechanism for long-
range transport of pollution from East Asia (Yienger et al.,
2000; Holzer et al., 2003, 2005; Liang et al., 2005; Wueb-
bles et al., 2007) and from N. America (Cooper et al., 2002;
Stohl et al., 2002; Li et al., 2005). These WCBs are particu-
larly active during spring, but play a major role in controlling
long-range transport for all seasons (Liang et al., 2005; Li et
al., 2005; Kiley and Fuelberg, 2006). In addition, transport in
the boundary layer behind or ahead of the surface cold fronts
of midlatitude cyclones is another pathway of pollution ex-
port at lower altitudes (Liu et al., 2003; Liang et al., 2004;
Cooper et al., 2002). During summer, convective processes
can also play an important role (Thompson et al., 1994; Bey
et al., 2001a; Li et al., 2006; Kiley and Fuelberg, 2006). The
efficiency with which aerosols and their precursors are trans-
ported in each of these pathways depends on how much dry
and wet deposition they experience. Aerosols transported in
the marine boundary layer close to the ocean’s surface are
rapidly removed by deposition. Rapid upward transport in
midlatitude cyclones or convective storms is associated with
intense precipitation. This leads to the scavenging of most
pre-existing hydroscopic particles, resulting in a decrease of
aerosol export efficiencies with altitude (Park et al., 2005).
Pollution aerosols (which we will use to refer to a mixture of
industrial/urban pollution aerosols as well as biomass burn-
ing aerosols) are thus most efficiently transported above the
boundary layer between 900–700 hPa (Bahreini et al., 2003;
Huebert et al., 2003; Heald et al., 2006a). A study by Dicker-
son et al. (2007) found that dry convection, with little precip-

itation, may be especially effective in the vertical transport of
aerosols over NE China during spring. Furthermore, as warm
air from the polluted continents advects over colder marine
air, stable conditions with minimal vertical mixing can be
produced (Angevine et al., 1996; Knapp et al., 1998). As a
result the pollution layers are isolated from the ocean surface
and soluble species, such as aerosols and nitric acid, can be
transported hundreds of kilometers downwind at relatively
low altitudes (Daum et al., 1996; Neiman et al., 2006; Owen
et al., 2006).

Satellite observations present a global view of the distri-
bution of aerosols and their precursors over multiple years,
overcoming the limitation of in-situ measurements in dura-
tion and spatial coverage. While satellite observations have
their own limitations (i.e., cloud contamination, limited in-
formation on aerosol type and/or vertical distribution of
aerosols), they can be used to provide new evidence for the
intercontinental transport of aerosols, and make the quan-
tification of this transport flux possible. For example, Yu et
al. (2008) used satellite observations from the Moderate Res-
olution Imaging Spectrometer (MODIS) and the Geoscience
Laser Altimeter System (GLAS) to derive a 18 Tg year−1

flux of pollution aerosols leaving Asia (at 30–60◦ N), 25 %
reaching the N. American west coast. Using both MODIS
and the space-based lidar Cloud Aerosol LIdar with Orthogo-
nal Polarization (CALIOP), Yu et al. (2012) found that 56 Tg
of dust reaches the west coast of N. America, such that the
overall inflow of industrial/urban, biomass burning and dust
aerosols to N. America is comparable to the total mass of
aerosols emitted over N. America. Remote sensing observa-
tions from the Ozone Monitoring Instrument (OMI) and the
Infrared Atmospheric Sounding Interferometer (IASI) show
frequent transpacific transport of SO2 plumes from E. Asia
(Li et al., 2010; Clarisse et al., 2011; Hsu et al., 2012).

A mechanistic understanding of the processes leading to
export and long-range transport of pollution has come from
studying individual case studies, in which specific transport
plumes were observed by in situ instruments and/or by satel-
lites over the N. Pacific and N. Atlantic Oceans (e.g., Stohl
and Trickl, 1999; Jaffe et al., 1999, 2001, 2003; Cooper et al.,
2001, 2004; Husar et al., 2001; Brock et al., 2004; Heald et
al., 2006a; Dickerson et al., 2007; Eguchi et al., 2009). Val-
idating global models against comparison to such individual
events can be challenging because model errors in meteo-
rological fields or emissions location can lead to large spa-
tial displacement of the modeled plume relative to observa-
tions (e.g., Nam et al., 2010). The low horizontal and vertical
resolution of global models, coupled with numerical diffu-
sion can also lead to difficulties in reproducing plumes ob-
served many thousands of kilometers downwind from source
regions (e.g., Lin et al., 2010; Rastigejev et al., 2010; Real et
al., 2010l; TF-HTAP, 2010). Furthermore, generalizing from
a few case studies conducted during a specific year or season
can be difficult.
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In this study, we construct composite Asian and N. Amer-
ican aerosol outflow events based on dozens of individual
cases for each season in order to examine the general fea-
tures of these events. This approach provides more general-
ity than individual long-range transport case studies, without
losing useful information that is washed out by simple sea-
sonal averaging. We apply this compositing methodology to
the GEOS-Chem chemical transport model and to MODIS
observations of aerosol optical depth (AOD) for the 2004–
2010 period. In Sect. 2, we describe the model and satellite
observations; we also validate the model prediction of AOD
by comparison to MODIS. In Sect. 3, we present results from
our compositing analysis for 244 Asian outflow events. We
contrast outflow events from Asia to those from N. America
in Sect. 4. Conclusions are presented in Sect. 5.

2 Methods

2.1 MODIS AOD

We use Level-3 (L3) daily MODIS AOD products at 550 nm,
derived by the standard dark-target retrieval algorithms over
the ocean and land (Remer et al., 2005). When available, we
also use AOD over land from the Deep Blue algorithm (Hsu
et al., 2006), which is designed to retrieve aerosol proper-
ties over reflective surfaces. We use seven years (2004–2010)
of the Collection 5.1 daily 1◦ × 1◦ globally gridded datasets
from the Aqua and Terra satellites. For comparison to model
simulations, we regrid the L3 MODIS AOD observations
to a 2◦ × 2.5◦ resolution. Here and in the rest of the pa-
per, MODIS AOD will always refer to total column AOD at
550 nm. We select MODIS observations that satisfy the fol-
lowing criteria: cloud fraction smaller than 50 %; AOD value
less than 3; at least 25 valid 10 km× 10 km pixels within
each 2◦ × 2.5◦ grid box. This limits cloud contamination and
produces statistically meaningful data (Zhang et al., 2005;
Zhang and Reid, 2006). We use the pixel-weighting method
(Levy et al., 2009) to calculate monthly, seasonal, and annual
mean gridded AOD. Validation of the MODIS dark-target re-
trieval over the ocean (Remer et al., 2008) and land (Levy et
al., 2010) demonstrates good agreement against AERONET
observations. Remer et al. (2008) note that MODIS Terra re-
trievals over ocean have a 0.015 offset compared to Aqua,
potentially due to changes in calibration.

In order to increase the spatial coverage of daily MODIS
AOD, we combine observations from the Terra and Aqua
satellites. We examine satellite retrievals in each grid box: if
only one satellite has retrievals, then this AOD represents the
final AOD; if both have retrievals, then the pixel-weighting
averaging method (Levy et al., 2009) is applied and the mean
value represents the final AOD.

The MODIS retrievals provide a measure of particle size
with the fine mode fraction (FMF) parameter. In our analy-
sis we will separate the fine AOD (AOD× FMF), which is

the AOD attributed to submicron particles (diameter<1 µm)
often of anthropogenic origin, while the coarse AOD
(AOD × (1-FMF) ) is attributed to supermicron particles
(dust and sea salt) (Kaufman et al., 2005b).

2.2 GEOS-Chem model

We use the GEOS-Chem chemical transport model (v8-02-
04,http://acmg.seas.harvard.edu/geos/) to conduct a coupled
aerosol-oxidant simulation for 2004-2010. GEOS-Chem is
driven by assimilated meteorological observations from the
Goddard Earth Observing System (GEOS) of the NASA
Global Modeling and Assimilation Office. We use GEOS-5
meteorological fields, with a native horizontal resolution of
0.5◦ latitude by 0.667◦ longitude and 72 vertical levels, ex-
tending from the surface up to 0.01 hPa (including 14 levels
between the surface and 2 km altitude). For computational
efficiency, we regrid these fields to a 2◦

× 2.5◦ horizontal
resolution. In addition, the top 37 levels (70–0.01 hPa) are
lumped into 11 levels leading to a reduced vertical grid with
47 layers.

The GEOS-Chem aerosol-oxidant simulation has been
presented and evaluated in several previous studies (Park et
al., 2003, 2004, 2005). The aerosol simulation includes sul-
fate (sulfate-ammonium-nitrate system) (Park et al., 2004),
organic carbon (OC) and black carbon (BC) (Park et al.,
2003), sea salt (Jaeglé et al., 2011), and soil dust (Fairlie et
al., 2007). The simulation we are using here does not include
an explicit formulation of secondary organic aerosol (SOA)
formation from oxidation of biogenic volatile organic com-
pounds such as isoprene and terpenes. All aerosol species are
treated as externally mixed.

A detailed ozone-NOx-hydrocarbon chemical mechanism
is included in the tropospheric oxidant chemistry simula-
tion (Bey et al., 2001b; Martin et al., 2003). The aerosol
and oxidant chemistry are coupled through the formation
of sulfate and nitrate, heterogeneous reactions, and aerosol
effects on photolysis rates. All aerosol species are subject
to dry deposition: sulfate, OC, and BC follow a standard
resistance-in-series scheme based on Wesely (1989) as im-
plemented by Wang et al. (1998); dust and sea salt follow the
size-dependent scheme of Zhang et al. (2001). Hydrophilic
aerosols are subject to wet deposition as described in Liu et
al. (2001), including rainout and washout from large scale
precipitation, and scavenging in convective updrafts, allow-
ing for return to the atmosphere after evaporation.

Interannually varying biomass burning emissions are
taken from the GFEDv2 monthly inventory (van der Werf et
al., 2006). The global anthropogenic emissions for GEOS-
Chem are from the EDGAR 3.2 FT2000 global inven-
tory. These emissions are scaled to the year 2006 using
the approach described in van Donkelaar et al. (2008).
Regional anthropogenic emissions over Asia are overwrit-
ten with the 2006 inventory of Zhang et al. (2009), and
emissions over North America are overwritten with the
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Figure 1.
Fig. 1. Comparison between MODIS (top row) and GEOS-Chem (middle row) AOD over the North Pacific in different seasons over 2004–
2010. From left to right: Spring (MAM), Summer (JJA), Fall (SON), and Winter (DJF). Panels in the bottom row show the percent difference
between GEOS-Chem and MODIS AOD. The grey color represents missing data or cloudy conditions in the MODIS observations. The
model is sampled only on the days when MODIS data is available. The white box in the top rows defines the Asian outflow region used in
Fig. 2.

Environmental Protection Agency’s National Emission In-
ventory for the year 2005. Over our 2004–2010 simulation
period we keep anthropogenic emissions constant. We note
that between 2006 and 2010, SO2 emissions from China
have decreased by 9 % (Lu et al., 2011), while US emis-
sions have decreased by 50 % (http://www.epa.gov/ttn/chief/
trends/index.html). Not taking into account the decline in
SO2 anthropogenic emissions over the 2004–2010 period al-
lows us to put equal weight on sulfate aerosol export events
for all years and emphasizes the role of meteorology.

Optical properties are calculated in GEOS-Chem for each
aerosol component as a function of local relative humidity
(Martin et al., 2003). AOD at 550 nm is calculated from
the mass concentration, extinction efficiency, effective ra-

dius, and particle mass density with updated size distri-
bution (Drury et al., 2010). For comparison to MODIS
fine mode AOD, we combine GEOS-Chem sulfate-nitrate-
ammonium, OC, BC and fine mode sea salt aerosols. For
coarse mode AOD we add dust together with coarse mode
sea salt aerosols. The daily model AOD is sampled only on
the days and locations when cloud-free MODIS observations
are available.

2.3 Model evaluation

Figure 1 shows the MODIS and GEOS-Chem seasonal mean
AOD over the N. Pacific Ocean for 2004–2010. The model
and observations display their largest AOD enhancements
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Figure 2.

Fig. 2. Daily timeseries of AOD in the Asian outflow region (145◦–155◦ E, 30◦–50◦ N, white box in Fig. 1) for 2004–2010:(a) total AOD,
(b) coarse AOD,(c) fine AOD. MODIS AOD is shown in black and GEOS-Chem AOD in red. In addition, modeled dust AOD is shown in
panel b (blue line) and modeled sulfate in panel c (blue line). A 5-day running mean was applied to the daily AOD for both MODIS and
GEOS-Chem.

during spring (March–May), as a result of frequent pollution
export events combined with dust storms and, for some years,
boreal biomass burning emissions. The AOD decreases from
0.2–0.4 during spring to values< 0.2 for other seasons. The
increase in AOD over the central N. Pacific Ocean during
winter (December-February) is associated with sea salt pro-
duced by strong winds in the storm track. Note that the lack
of MODIS observations over the N. Pacific Ocean during JJA
is due to persistent cloud cover in that region. Over the ocean,
the model exhibits a negative bias ranging from 10 to 40 %
(Fig. 1, bottom panels). The agreement is particularly good
during winter and spring (with a bias generally smaller than
−20 %). The largest model underestimate occurs in summer,
with a 20–40 % negative bias over most of the N. Pacific.
Potential reasons for this underestimate are examined below.

Figure 2 compares the 2004–2010 daily timeseries of ob-
served and modeled AOD in the Asian outflow region over
the NW Pacific ocean (145◦–155◦ E, 30◦–50◦ N, as defined
by the white box in Fig. 1). We only display days with at
least 20 % valid MODIS observations within the selected re-
gion. We then apply a 5-day running mean to both mod-
eled and observed timeseries. The model total AOD shows
a small negative systematic bias (−17 %), but displays good
temporal correlation (r = 0.77) with MODIS (Fig. 2a). The

model reproduces the seasonal cycle, and captures most of
the synoptic-scale transport events. On average, modeled
coarse AOD is lower by 0.01 (12 %) compared to MODIS,
while fine AOD is lower by 30 % in the Asian outflow re-
gion (Fig. 2b,c). The model negative bias for fine AOD is
largest during late spring and summer. Some of this un-
derestimate might be due to model representation of boreal
biomass burning. In our GEOS-Chem simulation, biomass
burning emissions, like all surface emissions, are confined to
the boundary layer, while in reality a significant fraction of
plumes generated by fires might be injected in the free tropo-
sphere, enhancing their long-range transport (e.g., Leung et
al., 2007; Turquety et al., 2007). The underestimate of AOD
over biomass burning source regions of Siberia, Alaska, and
Northern Canada during summer can be seen in Fig. 1. The
fact that we do not include an explicit SOA mechanism in our
GEOS-Chem simulation might also contribute to this under-
estimate. However, Lapina et al. (2011) used a GEOS-Chem
simulation with land biogenic SOA formation and still noted
a systematic GEOS-Chem underestimate of MODIS AOD
by 20 % over the remote oceans, which they attributed to a
combination of satellite retrieval bias and a missing marine
aerosol source. They found that inclusion of a marine organic
matter source did not help reduce this bias.

www.atmos-chem-phys.net/13/1221/2013/ Atmos. Chem. Phys., 13, 1221–1242, 2013
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Fig. 3.Top: Daily GEOS-Chem sulfate AOD averaged in the Asian outflow region (30–60◦ N, 150◦ E, black solid line) for the year 2005. The
dashed line indicates the 60-day running mean. Middle: Sulfate AOD anomalies “Asian outflow timeseries” (timeseries on top panel minus
the 60-day running mean). Bottom: Daily MODIS fine AOD at 30–60◦ N, 145–155◦ E for 2007. Red triangles indicate the 33 enhanced
Asian export LRT+ days identified using the GEOS-Chem “Asian outflow timeseries”, as described in Sect. 3.1.

In addition several previous studies have validated GEOS-
Chem against aircraft and ground-based aerosol observations
in the E. Asian outflow and over the N. American west coast.
For example, GEOS-Chem captured both the timing and dis-
tribution of Asian dust outbreaks during the TRACE-P and
ACE-Asia aircraft experiments conducted in spring 2001
(Fairlie et al., 2007). The model also reproduced observed
vertical profiles of dust aerosols in transpacific plumes dur-
ing the INTEX-B aircraft campaign in April 2006 (Fairlie et
al., 2010). While there was no significant bias in modeled
Asian SOx (gas phase SO2+ sulfate aerosol) outflow during
TRACE-P (Park et al., 2005), Heald et al. (2005) found that
modeled sulfate aerosol concentrations were 50 % too high
during ACE-Asia. The sulfate overestimate could be due to
model error in the SO2 oxidation rate. More recently, van
Donkelaar et al. (2008) found that GEOS-Chem also cap-
tures the mean INTEX-B aircraft profiles of SOx (gas phase
SO2+ sulfate aerosol) and sulfate over the NE Pacific Ocean
with a positive bias ranging from 2.5 to 59 %. The model re-
produced the observed profiles of BC during TRACE-P and
ACE-Asia (Park et al., 2005; Heald et al., 2005), but under-
estimated OC profiles by a factor of 10-100 in the free tro-
posphere. Over the N. Eastern Pacific Ocean during INTEX-
B, GEOS-Chem captured the observed OC profile (Dunlea
et al., 2009). Heald et al. (2011) show that including an addi-
tional anthropogenic source of SOA leads to improved agree-
ment to OC mass concentration observations near continents.

3 Composites of aerosol export events from East Asia

In this section we identify hundreds of outflow events based
on the GEOS-Chem sulfate AOD timeseries for 2004–2010.
We then composite these events by season to identify general
patterns in the horizontal location of AOD enhancements, the
vertical distribution of aerosols, and common meteorological
features associated with export.

3.1 Identification of export events

Most of the pollution export from East Asia to the NW Pa-
cific Ocean occurs over the 30◦–60◦ N latitude range (Liang
et al., 2005). We thus analyze daily variations in GEOS-
Chem sulfate AOD averaged over this latitude band at 150◦ E
longitude for 2004-2010. We choose sulfate aerosols as a
proxy for pollution aerosols, as they are one of the dominant
components of anthropogenic aerosols found in trans-Pacific
plumes (e.g., Brock et al., 2004; Dunlea et al., 2009). The
model sulfate AOD timeseries at 150◦ E is shown in Fig. 3
(top panel) for the year 2007. Timeseries for other years
are similar. Daily sulfate AOD is highly episodic, with the
strongest outflow events occurring during spring, but with
significant events also taking place during other seasons as
noted in previous studies (Yienger et al., 2000; Jaeglé et al.,
2003; Liang et al., 2004). We apply a 60-day high-pass fil-
ter to remove the seasonal cycle. We will refer to the result-
ing sulfate AOD anomalies timeseries as the “Asian outflow

Atmos. Chem. Phys., 13, 1221–1242, 2013 www.atmos-chem-phys.net/13/1221/2013/
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timeseries” (Fig. 3, middle panel). By plotting the probabil-
ity distribution function of the Asian outflow timeseries, we
find that it is log-normally distributed. We define enhanced
aerosol export events during spring as the top 20 % days in
the frequency distribution of the Asian outflow timeseries
for 2004–2010. For other seasons, we use the top 15 % as
a threshold, since during these seasons the frequency dis-
tributions are narrower, indicating fewer enhanced transport
episodes. We will refer to these enhanced outflow days as
“LRT+ events”. In cases where outflow events occur over a
period of 2–3 days (which occurs for 40 % of the events),
we only keep the day with the highest AOD enhancement
to avoid multiple counting. The red triangles in Fig. 3 corre-
spond to the 33 LRT+ days identified in 2007 (10 in spring, 8
in summer, 6 in fall and 9 in winter). There appears to be rea-
sonable correspondence between LRT+ days identified with
the model and elevated fine mode AOD values measured by
MODIS (Fig. 3, bottom panel). Out of the 33 events iden-
tified in the model, 22 correspond to peaks in MODIS fine
AOD with another 5 events occurring within 1 day of a peak
in MODIS.

For the 2004–2010 time period, we have identified 244
LRT+ days: 81 in spring, 47 in summer, 56 in fall and 60
in winter. This corresponds to a mean frequency of one event
every 8 days during spring, decreasing to one event every
14 days during summer. Note that pollution export out of
East Asia is often accompanied by export of dust aerosols
(Uematsu et al., 1983; Jaffe et al., 1999; Uno et al., 2001;
Takemura et al., 2002; Huebert et al., 2003). Indeed, as dust
storms from the Gobi Desert and Taklimakan Desert move
to East China, the strong winds often sweep anthropogenic
aerosols out of the polluted regions to the N. Pacific Ocean.
We find that in 54 of the 81 LRT+ spring events, dust was
also exported in significant amounts.

3.2 Composites of export events

For each season, we generate composite maps averaging all
LRT+ days over the NW Pacific Ocean. Fig. 4 shows the
composites of GEOS-Chem AOD anomalies (top row) and
MODIS AOD anomalies (middle row). We define anoma-
lies as the difference between the mean AOD on LRT+

days minus the seasonal average. For example, the spring
LRT+ composite is calculated by taking the mean model
AOD for the 81 LRT+ days identified in MAM and sub-
tracting the spring mean AOD for 2004–2010. During LRT+

events, GEOS-Chem predicts large AOD enhancements ex-
tending from southern Japan to the Kamchatka Peninsula. At
150◦ E, AOD anomalies reach∼0.1-0.15, corresponding to
a 50–100 % enhancement relative to seasonal mean values
(Fig. 4a). The pattern is consistent from season to season.
MODIS AOD composites on those same LRT+ days display
a similar pattern, although not matching the exact shape of
the modeled enhancement, possibly as a result of the patchy
sampling of MODIS (Fig. 4b).

A composite of vertical profiles of model aerosol extinc-
tion coefficients at 150◦ E (Fig. 4c) shows that transport of
sulfate occurs mostly below 4 km altitude, with maximum
enhancements at 1–3 km. The LRT+ sulfate extinction coef-
ficients are enhanced by a factor of two relative to seasonal
mean values. During spring, substantial amounts of dust also
get transported on LRT+ days, but at higher altitudes (∼2–
8 km) as a result of the elevated topography of Asian deserts.
Studies based on the CALIOP space-borne lidar found Asian
dust layers transported at altitudes ranging from 4 km to 9 km
(Huang et al., 2008; Uno et al., 2008; Eguchi et al., 2009),
consistent with model results (e.g., Heald et al., 2006a; Nam
et al., 2009). In GEOS-Chem, dust aerosols account for 30 %
of the total AOD enhancement during spring LRT+ days.

Figure 5 shows composite meteorological fields two days
before LRT+ days. This 2-day lag corresponds to the average
transport time from East China to 150◦ E (Liang et al., 2005).
Sea level pressure (SLP) anomaly composites (filled contours
in Fig. 5, top panels) display an east-west dipole structure in
spring, fall and winter, with a negative SLP anomaly of 3–
8 hPa over NE China and a positive anomaly of 2–5 hPa over
Japan. During summer, the negative SLP anomaly is much
weaker. The negative SLP anomaly in spring, fall and winter
is indicative of surface low pressure systems over NE China,
inducing strong convergent flow (southwesterly and north-
westerly winds) over eastern China as shown by the 850 hPa
wind speed anomalies (Fig. 5, bottom panels). This anomaly
corresponds to an 850 hPa trough, upward motion, and a pre-
cipitation band (not shown), all implying the influence of a
midlatitude cyclone system. Cyclones over NE China are re-
lated to lee cyclogenesis, originating over three main regions:
the Altai-Sayan mountain ranges, Lake Baikal (south of the
Stanovoi mountain range), and east of the Great Xinganling
Mountains in NE China (Chen et al., 1991). These cyclones
occur year-round, with a maximum frequency in spring and
a minimum in winter.

The positive SLP anomaly and reduced wind speeds over
the NW Pacific Ocean near Japan are consistent with the
presence of stagnant conditions 2 days before LRT+ events
conducive to pollution accumulation over NE China. These
conditions are favorable for build-up and then export of an-
thropogenic aerosol from this highly polluted region to the
N. Pacific Ocean. The weak summer SLP signature indi-
cates that cyclones are not the main meteorological mecha-
nism leading to export in that season, with convection likely
playing a more dominant role. During winter, the widespread
negative SLP anomaly over Eastern China represents a weak-
ening of the Siberian High, accounting for less stable bound-
ary layer conditions over these regions. This induces strong
northwesterly winds at lower altitudes, which contribute to
the enhanced sulfate outflow at these levels (from the surface
to 3 km, see Fig. 4). By examining individual outflow events,
we find that some occur behind cold fronts, while others are
ahead of cold fronts.
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Fig. 4. Seasonal composites of AOD anomalies (defined as the difference between the AOD on LRT+ days and the seasonal mean AOD)
and extinction profiles over the NW Pacific Ocean on LRT+ days. From left to right: spring (MAM), summer (JJA), fall (SON), and winter
(DJF).(a) GEOS-Chem AOD anomalies (filled contours) with 850h Pa wind fields (arrows). The green line (150◦ E, 30◦–60◦ N) indicates
the wall defining our Asian outflow timeseries.(b) MODIS AOD anomalies. The grey color represents missing data or cloudy conditions
in the MODIS observations.(c) GEOS-Chem extinction profiles of sulfate (red) and dust (green) at 150◦ E, 30◦–60◦ N. The dashed lines
indicate the seasonal average, while the solid lines correspond to mean profiles on LRT+ days. The mean values for the AOD are indicated
in the figure caption.

Liang et al. (2005) correlated daily modeled Asian an-
thropogenic CO column in the outflow region with the local
SLP anomaly 2 days earlier for the 1992–2002 period. They
found a strong negative correlation centered over NE China
at 45◦ N, indicating that midlatitude cyclones were the dom-
inant synoptic scale influence on export of Asian CO across
all seasons. The SLP anomaly pattern displayed in Fig. 5 is
very similar to the pattern found in Liang et al. (2005), and
confirms the strong role of midlatitude cyclones in the export
of aerosols from E. Asia for all seasons, with the exception
of summer.

3.3 Evolution of export events over the N. Pacific Ocean
during spring

Once a pollution plume is exported to the NW Pacific Ocean,
its evolution is controlled by the meteorological conditions
downstream. Liang et al. (2005) and Reidmiller et al. (2010)
found that enhanced transpacific transport is characterized
by the combined effects of a strong Pacific High and a
strong low over Alaska. Fig. 6 shows the evolution of GEOS-
Chem spring AOD anomaly composites starting 2 days be-
fore LRT+ days and continuing for the 6 days following
these enhanced export days. Instead of the absolute AOD

Atmos. Chem. Phys., 13, 1221–1242, 2013 www.atmos-chem-phys.net/13/1221/2013/
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Fig. 5.Seasonal composites of meteorological fields anomalies 2 days before E. Asian LRT+ events relative to the seasonal means for 2004-
2010. Top: sea level pressure anomalies (filled contours) and surface wind fields (arrows indicate direction and speed). Bottom: 850 hPa wind
speed anomalies (filled contours) and wind fields (arrows).

anomalies relative to mean seasonal conditions (as used in
Fig. 4), we show the anomalies expressed as a percentage rel-
ative to mean seasonal conditions. This emphasizes the influ-
ence of the composite Asian plume as it travels over cleaner
conditions in the central and eastern Pacific Ocean. The re-
sulting composite evolution of export events displays some
coherence for a period of 6–9 days. This illustrates that de-
spite the variability of the 81 individual export events (with
different composition, latitudes, altitudes, and speeds), the
composite can capture some common patterns. We further
test the general nature of the patterns shown in Fig. 6 by elim-
inated the top 3 % of transport events. The resulting compos-
ites remain nearly unchanged (not shown).

At LRT+
−2 days, there is a strong AOD enhancement

over NE China. This enhancement is transported to our wall
at 150◦ E in 2 days, and reaches the central Pacific 2 days
later (LRT+

+2 days). The composite plume splits into two
branches, with the lower latitude branch (<45◦ N) being
transported eastward, and the high latitude branch (>45◦ N)
being transported poleward to the Arctic. By examining in-
dividual transport events, we find that the poleward transport
events reach the Arctic in 3–4 days and are favored by the
presence of a blocking high-pressure system in the N. Pa-
cific Ocean, similar to the results of Di Pierro et al. (2011)
and Matsui et al. (2011). Over the next 3 days, the lower
latitude aerosol plume is transported across the N. Pacific

Ocean, reaching the west coast of N. America 4–6 days after
the LRT+ export events, thus taking a mean 6–8 day trans-
port time from East China to the N. American west coast.
This rapid plume transport time is consistent with previous
studies (e.g., Yienger et al., 2000; Holzer et al., 2003, 2005;
TF-HTAP, 2010 and references therein). The magnitude of
the AOD enhancement over the N. American west coast is
∼10–20 % above the seasonal mean column AOD values,
extending from Alaska to California. Some of the composite
plume can also be trapped in the Pacific High and recirculates
in the subtropics, as suggested by the AOD enhancements on
LRT+

+5–6 days south of 30◦ N (Fig. 6). The perturbation
lasts for several days, implying a long lifetime of aerosols
in the dry environment of the descending air masses in the
Pacific High.

The composite evolution of MODIS AOD anomalies
(Fig. 6, bottom panels) shows similar, though very noisy,
spatial distributions as the model between LRT+

− 2 days
and LRT+

+0 day. Beyond LRT++0 day, the MODIS AOD
anomalies become very noisy over the N. Pacific Ocean and
no coherent plume emerges from the resulting composites.
This is due to frequent cloud cover and thus patchy sampling
of individual plumes by MODIS over the Pacific Ocean.

The corresponding composite evolution of SLP fields (not
shown) displays a strong low pressure anomaly over Mon-
golia and southern Siberia, the Altai-Sayan lee cyclogenesis

www.atmos-chem-phys.net/13/1221/2013/ Atmos. Chem. Phys., 13, 1221–1242, 2013
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Figure 6.
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Fig. 6. Springtime evolution of AOD anomalies from 2 days prior to LRT+ days to 6 days after LRT+ days over the N. Pacific. The AOD
anomalies are expressed in percent relative to seasonal mean AOD values.(a) GEOS-Chem AOD anomalies. Arrow indicated composites of
850hPa wind fields.(b) MODIS AOD anomalies.

region, on LRT+ minus 3–4 days. This low pressure system
is over NE China on days LRT+ minus 2 and 1 day. Strong
low-level northwesterly and southwesterly winds converge
over the East coast of China, coincident with the rising mo-
tion ahead of midlatitude cyclones. As the cyclone moves
towards the NE Pacific Ocean, the aerosol plume is trans-
ported offshore by the strong upper level winds ahead of the
cyclone.

4 N. American aerosol export compared to Asian export

We now contrast aerosol export from E. Asia to export from
N. America. Both regions are on the eastern parts of midlat-

itude Northern Hemisphere continents and are heavily pop-
ulated, with significant industrial activity. Both regions are
located at the start of the storm tracks (Stohl et al., 2001;
Eckhardt et al., 2004), so that export of pollution is domi-
nated by the same meteorological mechanisms: midlatitude
cyclones and seasonal convection. There are some major dif-
ferences in terms of emissions of aerosols and their pre-
cursors. Anthropogenic emissions of SO2 are significantly
higher over East Asia compared to N. America. In their 2006
anthropogenic emissions inventory, Zhang et al. (2009) es-
timate 31 Tg SO2 from China and 0.9 Tg from Japan. For
the year 2006, the Environmental Protection Agency (http://
www.epa.gov/ttn/chief/trends/index.html) reports 12 Tg SO2
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from the US, and Environment Canada’s National Pollu-
tant Release Inventory (http://www.ec.gc.ca/inrp-npri/) re-
ports 2 Tg from Canada. Vegetation is abundant in the East-
ern US, which leads to significant biogenic volatile organic
compound (VOC) emissions during summer (e.g. Guenther
et al., 1995; Millet et al., 2008; Warneke et al., 2010). In
contrast, E. Asia with its more arid conditions has weaker
biogenic VOC emissions (e.g., Guenther et al., 1995; Fu et
al., 2008), but considerable dust emissions, especially during
spring (e.g., Prospero et al., 2002; Shao and Dong, 2006).

Figure 7 compares the 2004–2010 monthly mean MODIS
AOD in the outflow regions of N. American (65◦–55◦ W,
30◦–50◦ N) and N. America (145◦–155◦ E, 30◦–50◦ N). On
an annual mean basis, the observed AOD in the E. Asian out-
flow is 40 % higher than in the N. American outflow. The
enhancement in the Asian outflow relative to the N. Amer-
ican outflow is particularly strong during spring, reaching
70–100 % during March–May. This is the result of both en-
hanced dust export and higher anthropogenic emissions of
aerosol precursors over E. Asia. Annual mean fine AOD in
the Asian outflow is 60 % higher relative to the N. American
outflow (Fig. 7c). Compared to N. America, coarse AOD is
40–70 % higher over E. Asia during February–May, when
dust dominates (Fig. 7b). In other months, when sea salt
dominates, coarse AOD is similar for both regions with a
mean AOD of 0.07 observed by MODIS and captured by
GEOS-Chem.

While MODIS AOD in the E. Asian outflow region has
a pronounced spring maximum, the N. American outflow
has a weaker seasonal variation, with a broad spring-summer
enhancement. This is potentially due to a smaller seasonal
contrast in meteorological conditions and cyclone activity
over N. America. Indeed, when we compare the two source
regions, we find a much larger seasonal range in tempera-
ture over E. Asia (max–min in monthly values: 31◦C) than
over eastern N. America (22◦ C). The same applies for wind
speed (E. Asia: 2.4 m s−1; eastern N. America: 1 m s−1),
relative humidity (E. Asia: 19 %; NE America: 4 %), and
precipitation (E. Asia: 3.5 mm day−1; eastern N. America:
1.9 mm day−1).

The weaker seasonal contrast in the N. American out-
flow could also be the result of enhanced SOA production
and export during summer from the Eastern US. Indeed the
GEOS-Chem model AOD predicts a small spring maximum
in AOD in the N. American outflow region, however it tends
to underestimate summertime fine AOD. As noted in Sect. 2,
SOA formation from biogenic VOCs is not included in our
GEOS-Chem simulation. This source accounts for 30 % of
the OC source over the eastern US during summer (Heald
et al., 2006b). The study of Lapina et al. (2011) did include
this additional OC source as well as an estimate of a marine
organic matter source. However, neither OC source could ex-
plain the gap between GEOS-Chem and MODIS AOD over
marine regions.

Figure 7.
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Fig. 7.Seasonal evolution of MODIS (solid lines) and GEOS-Chem
(dotted lines) 550 nm AOD in the E. Asian and N. American outflow
regions in the NW Pacific Ocean (145◦–155◦ E, 30◦–50◦ N, black)
and NW Atlantic Ocean (65◦–55◦ W, 30◦–50◦ N) for 2004-2010.
Individual panels show the total AOD(a), coarse mode AOD(b)
and fine mode AOD(c).

4.1 Composites of export events from N. America

Using the methodology described in Sect. 3.1, we de-
fine a “N. American outflow timeseries” based on daily
GEOS-Chem sulfate AOD timeseries over the Western North
Atlantic Ocean (65◦–55◦ W, 30◦–50◦ N). We identify 251
LRT+ events for 2004–2010 (72 events in spring, 60 in sum-
mer, 61 in fall and 58 in winter). During LRT+ events, the
composites for modeled and MODIS fine mode AOD anoma-
lies display strong positive anomalies around 60◦ W, with
AOD enhancements of 0.04–0.08, corresponding to a 50–
100 % increase relative to mean seasonal AOD (Fig. 8a,b).
The AOD enhancement pattern is similar for all seasons.
We note that while we use the same procedure to identify
N. American export events as in E. Asia, the number of
LRT+ events from N. America (251) is slightly higher than
from E. Asia (244). This is because E. Asian outflow events
can last longer than N. American events. And thus more
multi-day events are eliminated to avoid double counting.
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Fig. 8.Seasonal composites of AOD anomalies and extinction profiles over the NW Atlantic on LRT+ days.(a) GEOS-Chem AOD anomalies
(filled contours) with 850hPa wind fields (arrows).(b) MODIS AOD anomalies.(c) GEOS-Chem extinction profiles of sulfate aerosols at
60◦ W, 30◦–50◦ N (location indicated by green line in panels(a) and(b). The dashed lines indicate the seasonal average, while the solid
lines correspond to mean profiles on LRT+ days.

The composite modeled vertical profiles of sulfate aerosol
extinction coefficients on LRT+ days (Fig. 8c) shows a maxi-
mum at 1 km, and then decrease rapidly with altitude. During
LRT+ events, the sulfate AOD is a factor of two higher rela-
tive to mean seasonal conditions, a similar relative enhance-
ment to what we had found downwind of E. Asia. Spring and
summer display the largest AOD enhancements, suggesting
stronger export during these seasons.

The composite SLP anomalies 2 days prior to LRT+

events display a dipole structure, with a 3–5 hPa nega-
tive anomaly over continental N. America, and a positive
anomaly over the eastern part of the continent, extending
over the NW Atlantic Ocean. This structure is similar to
that which facilitates export from E. Asia, but the nega-
tive anomalies are centered farther inland. The negative SLP
anomalies are associated with surface low pressure systems

over the central US. This dipole structure induces strong
southwesterly winds at lower altitudes extending from Texas
to the Great Lakes region (Fig. 9, bottom panels). The south-
westerly winds then converge with northwesterly winds near
the US-Canada border leading to favorable conditions for
outflow of anthropogenic aerosols from these relatively pol-
luted regions out to the NW Atlantic Ocean.

Composites of SLP anomalies on LRT+ days (without any
lag) display a negative SLP anomaly over the Gulf of Saint
Lawrence and Quebec. This represents the moving low pres-
sure center ventilating the N. American boundary layer and
exporting aerosols to the NE Atlantic Ocean. The role of
migratory midlatitude cyclones in controlling the export of
pollution from N. America is consistent with previous stud-
ies (e.g., Merrill and Moody, 1996; Stohl, 2001; Auvray and
Bey, 2005; Fang et al., 2009). In particular, Fang et al. (2009)

Atmos. Chem. Phys., 13, 1221–1242, 2013 www.atmos-chem-phys.net/13/1221/2013/
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regressed modeled summertime CO fluxes out of N. America
with SLP, finding a very similar negative SLP anomaly over
the Gulf of Saint Lawrence.

4.2 Evolution of LRT+ spring export events over the
North Atlantic Ocean

Once over the Atlantic Ocean, pollution transport is con-
trolled by the strength and position of the Azores High and
the Icelandic Low (Auvray and Bey, 2005; Owen et al.,
2006). Fig. 10 follows the evolution of composite spring out-
flow events from N. America over an 8 day period: from 2
days prior to LRT+ to 6 days after LRT+. We show fine mode
AOD anomalies (expressed as percentage enhancement rel-
ative to seasonal values) to highlight pollution outflow. As
the composite outflow plume travels over the N. Atlantic
Ocean, it is stretched to the NE, following the south west-
erly winds in the storm track (LRT++1 day). Starting 2 days
after LRT+, we see one branch continuing to the NE, reach-
ing Europe on LRT++2–3 days, while another branch is en-
trained in the Azores High turning anticyclonically (LRT+

plus 3–6 days). These two branches are indicated by thick
black arrows and can also be seen in the MODIS fine AOD
anomaly composites (Fig. 10b). Such transatlantic transport
events have been observed at the PICO-NARE station in the
Azores Islands (Honrath et al., 2004; Owen et al., 2006).
Auvray and Bey (2005) noted that part of the recirculating

N. American plume in the Azores High can also head back
toward Europe.

4.3 Differences in the vertical profiles of sulfate in
E. Asian and N. American outflows

Figure 11 compares the modeled vertical profiles of sulfate
aerosol extinction in the Asian and N. American outflow
regions on LRT+ days composited by season. To empha-
size the vertical structure, we have normalized the profiles
by the maximum extinction values, which typically occur at
∼1 km altitude. In the boundary layer (below 2 km altitude)
the profiles in the two outflow regions are similar, however
the profiles differ significantly in the free troposphere. In the
Asian outflow region a larger fraction of the sulfate is found
at higher altitudes, especially during spring and winter. The
fraction of column sulfate present in the free troposphere
above 2 km altitude for the Asian outflow (N. American out-
flow) is: 54 % (35 %), 40 % (24 %), 42 % (25 %), 59 % (32 %)
in MAM, JJA, SON, DJF, respectively. Thus in the Asian out-
flow more than half of the sulfate export occurs above 2 km
altitude during winter and spring. In contrast, in the N. Amer-
ican outflow only a third of the outflow reaches these alti-
tudes.

These differences in the vertical distribution of sulfate
aerosols could be due to less efficient scavenging of SO2
and sulfate during export from the boundary layer to the
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a) Evolution of composite AOD anomalies: GEOS−Chem

b) Evolution of composite AOD anomalies: MODIS

Fig. 10.Springtime evolution of AOD anomalies from 2 days prior to LRT+ days to 6 days after LRT+ days over the N. Atlantic. The AOD
anomalies are expressed in percent relative to seasonal mean AOD values.(a) GEOS-Chem AOD anomalies. Arrow indicated composites of
850hPa wind fields.(b) MODIS AOD anomalies.

free troposphere off E. Asia compared to N. America.
Indeed, mean annual precipitation in the eastern US is
about 3–4 mm day−1, much higher than over East China at
1–2 mm day−1 (Fig. 11). While precipitation in the east-
ern US displays little seasonal variability, precipitation in
NE China occurs mostly during summer months. Domrös
and Peng (1988) report that 70 % of annual precipitation
over NE China takes place in June–July–August. During
summer, both regions have similar precipitation rates: 2–
3 mm day−1. However, during spring, the NE US experiences
2–3 mm day−1, but NE China sees only 1 mm day−1 (Fig. 11,
middle panels). For fall and winter, precipitation over NE
China is generally below 1 mm day−1, while over the NE US
it remains at 2–3 mm day−1. We further contrast these two

regions by examining composites of precipitation two days
before spring LRT+ events (Fig. 11, bottom panels). The re-
gion where we found maximum AOD anomalies (Figs. 6 and
10) is highlighted with a box in Fig. 11. Mean precipitation
in that box is 1.1 mm day−1 over E. Asia, but 2.1 mm day−1

over N. America. Even larger differences are found in fall
(E. Asia: 0.4 mm day−1; N. America: 1.8 mm day−1) and
winter (E. Asia: 0.4 mm day−1; N. America: 2.1 mm day−1).
Summer is the only season where precipitation in E. Asia
reaches levels comparable to those over N. America (2–
3 mm day−1), as a result of the summer monsoon.

Asian midlatitude cyclones in all seasons are usually asso-
ciated with strong surface winds but little precipitation, be-
cause the warm sector of the cyclone is from the dry interior
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Fig. 11. Seasonal composite of GEOS-Chem sulfate extinction profiles on LRT+ days in the outflow regions of N. America (30–50◦ N,
60◦ W, black line) and E. Asia (30–60◦ N, 150◦ E, red line). The sulfate extinction profiles are normalized by the maximum extinction values
for each season. From left to right: MAM, JJA, SON, DJF.

of China, where there is little moisture (Domrös and Peng,
1988). Eckhardt et al. (2004) examined global annual precip-
itation generated along WCB trajectories, also finding much
drier conditions in WCB over E. Asia and the western Pa-
cific Ocean (100◦ E–150◦ E) compared to Eastern N. Amer-
ica and the West Atlantic Ocean (–100◦ E to –50◦ E, see their
Fig. 11d). It thus appears the relative dryness of Asian cy-
clones makes them efficient systems for lifting aerosols and
their precursors to the free troposphere over NE China.

There is significant observational evidence that a sizeable
fraction of SO2 over China can escape scavenging during
lifting and then be converted to sulfate in the free tropo-
sphere during transpacific transport. Aircraft measurements
over central China in April 2008 displayed very large con-
centrations of SO2 in the free troposphere, with distinct
SO2 plumes observed at 2–4 km altitude reaching levels of
2–7 ppbv (He et al., 2012). Background free tropospheric
SO2 levels were about 1 ppbv over that region. Dickerson et
al. (2007) also reported significant levels of SO2 over NE
China, with 0.6 ppbv on average at 2.5 km altitude. SO2 pro-
files over the Yellow Sea show distinct layers at∼0.5 km
and 1.5 km altitude with peaks reaching 3 ppbv (Kline et al.,
2004). In contrast, Taubman et al. (2006) and Henningan
et al. (2006) measured 0.1–0.2 ppbv mean SO2 concentra-
tions at 2.5 km during summer over the NE US. Dickerson et
al. (2007) proposed that the high levels of SO2 above China
during spring could be due to dry convection ahead of cold
fronts lofting SO2 from the polluted boundary layer to the
free troposphere with little scavenging. Using the OMI in-
strument onboard the Aura satellite, Li et al. (2010) followed
the evolution of a SO2plume from NE China to the NW Pa-
cific Ocean, finding a∼2 day e-folding time for SO2. The
resulting conversion of SO2 to sulfate led to an increase in
MODIS AOD by 0.1–0.4 in the plume over the NW Pa-
cific Ocean. Using in situ aircraft measurements, Brock et
al. (2004) reported enhanced levels of sulfate aerosols and
gas-phase H2SO4 in an Asian plume intercepted off Califor-
nia Coast. Dunlea et al. (2009) presented two case studies of
Asian plumes observed over the NE Pacific Ocean at 3–6 km
altitude during spring 2006. One of the plumes was inter-

cepted 3–4 days downwind of Asia, with 2.4 ppbv SO2 and
50 % of the sulfur present at sulfate. An older plume, 7–10
days downwind of Asia, had less SO2 (0.1 ppbv), but more
sulfur present as sulfate (90 %).

Our model simulations suggest that the relative lack of
precipitation in WCBs over E. Asia leads to more efficient
export of SO2 and sulfate to the free troposphere compared
to N. America. During winter, an additional factor could be
that larger SO2 emissions over E. Asia result in the titration
of H2O2 by in-cloud SO2 oxidation to sulfate aerosols (Chin
and Jacob, 1996; Tu et al., 2004). As the availability of H2O2
is one of the limits to aqueous SO2 uptake, this could lead to
more efficient export of SO2, especially during winter when
oxidant levels are low.

5 Summary

We used MODIS observations of AOD combined with the
GEOS-Chem chemical transport model to analyze outflow
of aerosols out of E. Asia and N. America in 2004-2010.
Compared to MODIS, the GEOS-Chem model reproduces
the spatial distribution and temporal variation of Asian and
N. American aerosol outflow reasonably well in general.
However, GEOS-Chem underestimates MODIS fine AOD by
30 % over the N. Pacific and N. Atlantic Oceans. This neg-
ative bias is largest during summer and could be related to
too low fire injection heights in the model, or possibly to a
missing oceanic source of aerosols in the model. During the
7 years of our study period, we have identified 244 aerosol
outflow events from E. Asia (81 in spring, 47 in summer, 56
in fall, 60 in winter) and 251 events from N. America (72 in
spring, 60 in summer, 61 in fall, 58 in winter) using the mod-
eled sulfate AOD as a proxy for pollution aerosols. We have
composited these enhanced outflow events (LRT+ events)
by season to examine common patterns in aerosol enhance-
ments and meteorological fields. For both outflow regions
and across all seasons, we find a 50–100 % AOD enhance-
ment during LRT+ events relative to seasonal mean AOD
levels. We found that 2/3 of the E. Asian sulfate aerosol ex-
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Fig. 12.Comparison of GEOS-5 precipitation in N. America (left) and E. Asia (right) (unit: mm day−1). Top: Annual mean for 2004–2010.
Middle panel: Spring mean for 2004–2010. Bottom panel: composite of springtime LRT+ days with a 2 day lag. The box in the middle and
bottom panels indicates the location of maximum AOD enhancement.

port events during spring are associated with substantial dust
export.

In spring, fall and winter, both the E. Asian aerosol outflow
and the N. American outflow are favored by a dipole struc-
ture in SLP anomalies two days prior to LRT+ events. Over
E. Asia, this dipole is composed of negative SLP anoma-
lies over NE China and positive SLP anomalies over the Sea
of Japan and the East China Sea, accompanied by strong
convergent winds and upward motion over NE China. Over
N. America, the dipole is characterized by negative SLP
anomalies over central N. America and positive SLP anoma-
lies over the NW Atlantic, associated with strong convergent
winds over the Great Lakes region. This surface SLP sig-
nature indicates that midlatitude cyclones are the dominant
synoptic scale influence on export of pollution from both re-
gions. During summer the negative SLP anomaly is much

weaker, likely because other meteorological factors, such as
convective storms, are the dominant export mechanism.

We followed the evolution of composite spring export
events over the N. Pacific and N. Atlantic Oceans. The
modeled AOD composite plume maintained coherence over
an 8-day period as it crossed the ocean basins, illustrating
the common features of the individual long-range transport
events. The MODIS AOD composites did not show much
coherence because of frequent cloud cover and thus patchy
sampling of the plumes by the satellite. We found that after
export over the NW Pacific Ocean, the aerosol plume splits
into two branches. One branch is transported to the Arctic
when a blocking high pressure system is present in the central
N. Pacific Ocean. The other branch continues in the westerly
winds, reaching N. America 6–8 days after leaving E. China.
The resulting column AOD enhancement is 10–20 % over the
west coast of N. America. Part of the aerosol pollution plume
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recirculates in the Pacific High. The N. American composite
pollution plume follows two distinctive pathways over the
N. Atlantic Ocean: one transport pathway reaches Europe
after 4–5 days, while the other pathway is entrained in the
Azores High, turning anticyclonically.

We found that the E. Asian aerosol outflow differs from
N. American aerosol outflow in several aspects. MODIS an-
nual mean AOD over the NW Pacific Ocean is about 40 %
larger than AOD over the NW Atlantic Ocean. During spring,
AOD over the NW Pacific Ocean is nearly a factor of 2
higher than over the NW Atlantic Ocean. Some of this en-
hancement is due to the combination of higher anthropogenic
emissions of aerosol precursors over E. Asia together with
significant dust emissions. By examining vertical profiles of
model aerosol extinction coefficients in the outflow regions,
we found that 65–76 % of the N. American sulfate aerosol
column is confined to altitudes below 2 km. However, in the
E. Asian outflow 41–60 % of the sulfate aerosol is found be-
low 2 km, with a significant fraction occurring at 2–6 km al-
titude. During winter and spring, our model results suggest
that 54-59 % of the sulfate aerosol column in the Asian out-
flow occurs above 2 km altitude, compared to only 32–34 %
in the N. American outflow. We linked this more efficient
export to the free troposphere over E. Asia to the fact that
midlatitude cyclone precipitation over northern China is in-
hibited during the dry monsoon season (winter and spring),
while precipitation over Eastern N. America occurs all-year
round. The factor of 2–3 difference in precipitation results in
less scavenging during aerosol export episodes over E. Asia
than over N. America, suggesting more efficient export by
mid-latitude cyclones over E. Asia and thus a larger propen-
sity for intercontinental transport.
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