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Abstract. We use the GEOS-Chem chemical transport model

to examine the influence of bromine release from blowing-

snow sea salt aerosol (SSA) on springtime bromine activa-

tion and O3 depletion events (ODEs) in the Arctic lower tro-

posphere. We evaluate our simulation against observations of

tropospheric BrO vertical column densities (VCDtropo) from

the GOME-2 (second Global Ozone Monitoring Experiment)

and Ozone Monitoring Instrument (OMI) spaceborne instru-

ments for 3 years (2007–2009), as well as against surface

observations of O3. We conduct a simulation with blowing-

snow SSA emissions from first-year sea ice (FYI; with a sur-

face snow salinity of 0.1 psu) and multi-year sea ice (MYI;

with a surface snow salinity of 0.05 psu), assuming a fac-

tor of 5 bromide enrichment of surface snow relative to sea-

water. This simulation captures the magnitude of observed

March–April GOME-2 and OMI VCDtropo to within 17 %,

as well as their spatiotemporal variability (r = 0.76–0.85).

Many of the large-scale bromine explosions are successfully

reproduced, with the exception of events in May, which are

absent or systematically underpredicted in the model. If we

assume a lower salinity on MYI (0.01 psu), some of the

bromine explosions events observed over MYI are not cap-

tured, suggesting that blowing snow over MYI is an impor-

tant source of bromine activation. We find that the modeled

atmospheric deposition onto snow-covered sea ice becomes

highly enriched in bromide, increasing from enrichment fac-

tors of ∼ 5 in September–February to 10–60 in May, con-

sistent with composition observations of freshly fallen snow.

We propose that this progressive enrichment in deposition

could enable blowing-snow-induced halogen activation to

propagate into May and might explain our late-spring un-

derestimate in VCDtropo. We estimate that the atmospheric

deposition of SSA could increase snow salinity by up to

0.04 psu between February and April, which could be an im-

portant source of salinity for surface snow on MYI as well

as FYI covered by deep snowpack. Inclusion of halogen re-

lease from blowing-snow SSA in our simulations decreases

monthly mean Arctic surface O3 by 4–8 ppbv (15 %–30 %) in

March and 8–14 ppbv (30 %–40 %) in April. We reproduce a

transport event of depleted O3 Arctic air down to 40◦ N ob-

served at many sub-Arctic surface sites in early April 2007.

While our simulation captures 25 %–40 % of the ODEs ob-

served at coastal Arctic surface sites, it underestimates the

magnitude of many of these events and entirely misses 60 %–

75 % of ODEs. This difficulty in reproducing observed sur-

face ODEs could be related to the coarse horizontal reso-

lution of the model, the known biases in simulating Arctic

boundary layer exchange processes, the lack of detailed chlo-

rine chemistry, and/or the fact that we did not include direct

halogen activation by snowpack chemistry.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Ozone depletion events (ODEs) are often observed in the

springtime Arctic boundary layer (Barrie et al., 1988; Bot-

tenheim et al., 2009, 1986; Bottenheim and Chan, 2006; Hal-

facre et al., 2014; Koo et al., 2012; Oltmans et al., 2012; Olt-

mans and Komhyr, 1986). While ODEs occur episodically

at coastal Arctic sites, lasting 1–3 d, they are more persis-

tent and widespread over the frozen ocean (e.g., Simpson et

al., 2007b, and references therein). These ODEs have been

linked to the release of significant levels of bromine radicals,

in a phenomenon called bromine explosion (Abbatt et al.,

2012; Simpson et al., 2007b). Both ground-based and satel-

lite instruments have reported elevated BrO columns over the

Arctic during March and April (Choi et al., 2012, 2018; Hön-

ninger and Platt, 2002; Jones et al., 2009; Liao et al., 2012;

Neuman et al., 2010; Peterson et al., 2017; Salawitch et al.,

2010; Simpson et al., 2017; Theys et al., 2011; Wagner et

al., 2001). In addition to ODEs in surface air during spring,

the elevated bromine radicals result in the rapid oxidation of

mercury and its deposition to snowpack (Ebinghaus et al.,

2002; Schroeder et al., 1998; Steffen et al., 2008), which can

have significant impacts on the health of people and wildlife

in polar regions (AMAP, 2011).

An autocatalytic cycle involving the heterogeneous release

of sea salt bromide (Br−) via uptake of HOBr was suggested

to be the primary cause of bromine explosions and ODEs

(Abbatt et al., 2012; Fan and Jacob, 1992; Hausmann and

Platt, 1994; Simpson et al., 2007b).

HOBr + Br−aq + H+

aq −→ H2O + Br2 (R1)

Br2 + hv −→ 2Br (R2)

Br + O3 −→ BrO + O2 (R3)

BrO + HO2 −→ HOBr + O2 (R4)

Br + CH2O −→ HBr + HCO (R5)

HBr
aerosol
−→ Br−aq + H+

aq (R6)

Reaction (R1) is a multiphase reaction, which takes place on

acidic aerosols, cloud droplets, and snow grains. This reac-

tion is required for the initial release of bromine to the at-

mosphere but also maintains high levels of BrO by allowing

the fast recycling of Br− to reactive bromine (Fan and Jacob,

1992; Lehrer et al., 2004). In addition, the heterogeneous re-

action of HOBr with sea salt chloride (Cl−) can release BrCl

from the condensed phase (Abbatt et al., 2012).

In the global troposphere, inorganic bromine (Bry) has

three major sources: the debromination of sea salt aerosol

(SSA) produced by breaking waves in the open ocean, pho-

tolysis and oxidation of bromocarbons, and transport of Bry
from the stratosphere. Release of Br− from oceanic SSA is

estimated to be the largest global source of tropospheric Bry
(Sander et al., 2003; Zhu et al., 2019). Current global mod-

els that include these three sources of tropospheric bromine,

as well as multiphase reactions such as Reaction (R1), can-

not reproduce the observed elevated levels of tropospheric

BrO over polar regions during spring (Parrella et al., 2012;

Schmidt et al., 2016). Four classes of substrates specific to

polar regions have been proposed as a source of Br− in Re-

action (R1): salty snowpack on sea ice and coastal regions

(McConnell et al., 1992; Simpson et al., 2005; Toyota et al.,

2011), first-year sea ice (Frieß et al., 2004; Nghiem et al.,

2012; Wagner et al., 2007), SSA produced from frost flowers

(Kaleschke et al., 2004; Rankin et al., 2002), and SSA pro-

duced from blowing salty snow (Jones et al., 2009; Yang et

al., 2008).

Both laboratory and outdoor chamber experiments have

detected Br2 production when acidified surface saline snow

was exposed to sunlight (Pratt et al., 2013; Wren et al., 2013).

However, no Br2 production was detected over sea ice and

brine icicles, suggesting that brines and frost flowers on new

sea ice surfaces are not a bromine activation source (Pratt

et al., 2013). The proposed role of frost flowers as a direct

source of SSA is disputed by several field and laboratory ex-

periments showing that frost flowers are difficult to break

even under strong wind conditions (e.g., Alvarez-Aviles et

al., 2008; Roscoe et al., 2011; Yang et al., 2017).

A number of studies have focused on the role of aerosols,

in particular SSA from blowing snow, as a key mecha-

nism to initiate and sustain bromine activation aloft. Yang

et al. (2008) proposed blowing-snow SSA, produced after

the sublimation of wind-lofted salty snow on sea ice, as a

source of BrO. This source is consistent with satellite obser-

vations of large-scale BrO column enhancements over Arc-

tic and Antarctic sea ice, which are often associated with

high surface wind speeds that can generate blowing-snow

events (Begoin et al., 2010; Blechschmidt et al., 2016; Choi

et al., 2018; Jones et al., 2009). Using ground-based mea-

surements in coastal Alaska, Frieß et al. (2004) found that

periods of enhanced BrO were coincident with an increase

in aerosol extinction at higher wind speeds (> 5 m s−1), sug-

gesting that halogen activation and/or recycling takes place

in situ on SSA aerosol produced by the sublimation of dis-

persed snow grains or frost flowers. Peterson et al. (2017)

and Simpson et al. (2017) reported aircraft observations of

the vertical distribution of BrO and aerosol extinction con-

sistent with initial activation on snowpack followed by trans-

port aloft (500–1000 m), where high BrO was sustained by

recycling on aerosols. More recently, Frey et al. (2020) and

Giordano et al. (2018) reported direct observations of SSA

production from blowing snow above sea ice. In particular,

Frey et al. (2020) found that the Br−/Na+ ratio of blowing-

snow SSA observed at 29 m above the ground decreased by a

factor of 2–3 relative to observations at 2 m, suggesting rapid

Br− release via Reaction (R1) from blowing-snow SSA.

There are only a few modeling studies which have exam-

ined the link between blowing-snow SSA and bromine ex-

plosions. In their pioneering study, Yang et al. (2010) imple-

mented the Yang et al. (2008) blowing-snow parameteriza-

tion in the p-TOMCAT model and presented a comparison

Atmos. Chem. Phys., 20, 7335–7358, 2020 https://doi.org/10.5194/acp-20-7335-2020
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to satellite retrievals of BrO columns from the Global Ozone

Monitoring Experiment (GOME) for 2 months. Their evalua-

tion showed qualitative agreement with observations over po-

lar regions for those months. Theys et al. (2011) describe two

3 d case studies over the Arctic and Antarctic, comparing the

p-TOMCAT simulation to tropospheric BrO columns from

the second Global Ozone Monitoring Experiment (GOME-

2). There was qualitative agreement with the location and

timing of the two BrO explosion events. However, Theys et

al. (2011) note that beyond these case studies there were large

discrepancies between the model and observations, reflect-

ing uncertainties in the p-TOMCAT Br− emissions, such as

assumptions about snow salinity and the fraction of Br− in

SSA released to the gas phase. Zhao et al. (2016) used the

UM-UKCA (Unified Model coupled to the United Kingdom

Chemistry and Aerosols model) chemistry–climate model

to simulate a bromine explosion case study initiated by a

blowing-snow event and transported to the Canadian high

Arctic. While the model reproduced the vertical extent of

the BrO plume, it was not as successful at capturing the tim-

ing or magnitude of the observed BrO. Choi et al. (2018)

demonstrated a strong spatial and temporal correlation be-

tween bromine explosions observed by the Ozone Monitor-

ing Instrument (OMI) and blowing-snow SSA as simulated

in the GEOS-5 (Goddard Earth Observing System) modeling

system. However, their study did not include a simulation of

bromine photochemistry.

Here, we use the GEOS-Chem global chemical transport

model to further quantify the role played by blowing-snow

SSA in springtime Arctic bromine explosions and examine

the associated tropospheric O3 depletion. We systematically

evaluate a 3-year GEOS-Chem simulation (2007–2009) via

comparisons to satellite retrievals of tropospheric BrO ver-

tical column densities (VCDtropo) from GOME-2 and OMI.

We also compare the model to in situ surface observations of

O3 at several Arctic and sub-Arctic sites. Section 2 describes

the GEOS-Chem simulations and the observations used in

this study. We evaluate the model’s capability to reproduce

the timing, magnitude, and spatial extent of bromine explo-

sion events observed by GOME-2 and OMI in Sect. 3. In

Sect. 4, we examine the impact of blowing-snow SSA on

surface O3. We assess the contribution of atmospheric depo-

sition to surface snow salinity and bromide content in Sect. 5.

Conclusions are presented in Sect. 6.

2 Observations and model simulations

2.1 Satellite observations of tropospheric BrO vertical

column densities

The second Global Ozone Monitoring Experiment (GOME-

2) is a nadir-scanning ultraviolet–visible spectrometer on

the METOP-A (Meteorological Operational) satellite, which

was launched on 19 October 2006 in a sun-synchronous po-

lar orbit with an Equator crossing time of 09:30 LT (Munro

et al., 2006). The GOME-2 spectrometer covers the 240–

790 nm wavelength region, with a spectral resolution be-

tween 0.26 and 0.51 nm. It has a ground pixel size of

80 km × 40 km and a scanning swath of 1920 km. In this

study, we use the daily 2007–2009 GOME-2 VCDtropo re-

trieved by Theys et al. (2011). Briefly, the VCDtropo values

are derived from a residual technique that combines mea-

sured slant columns and calculated stratospheric columns,

accounting for the impact of clouds, surface reflectivity,

and viewing geometry on the measurement sensitivity. The

stratospheric BrO contribution is removed using the dy-

namic climatology based on the BASCOE (Belgian Assim-

ilation System for Chemical ObsErvations) chemical trans-

port model as described in Theys et al. (2009, 2011). The

tropospheric slant columns are converted to vertical columns

with a tropospheric air mass factor (AMF) assuming differ-

ent BrO profile shapes depending on surface albedo. For low

surface albedo (< 0.5), a Gaussian-shaped BrO profile with

a maximum at 6 km is used. For high surface albedo (> 0.5),

the assumed tropospheric BrO concentration profile is con-

stant in the first kilometer above the Lambertian surface re-

flector. For this second case, which characterizes most of the

ice- and snow-covered Arctic, there is a high sensitivity to

BrO close to the surface and a weak dependence of the tro-

pospheric AMF to the shape of the profile. As in Theys et

al. (2011), we only consider retrievals for values of the solar

zenith angle (SZA) of less than 80◦ and cloud fractions be-

low 0.4 for which the pressure difference between the surface

and the top of the cloud is less than 400 mbar.

We also use the BrO VCDtropo from the Ozone Moni-

toring Instrument (OMI) on board the Aura satellite, which

was launched on 15 July 2004 in a sun-synchronous po-

lar orbit with a 13:30 LT Equator overpass time (Levelt et

al., 2006). OMI is a nadir solar backscatter spectrometer

that measures ultraviolet–visible wavelengths (270–500 nm)

and has a horizontal resolution of 13 km × 14 km and swath

width of 2600 km. Since 2008, the OMI swath coverage has

been reduced due to an external obstruction. We use here the

daily 2007–2009 VCDtropo values, which were retrieved by

Choi et al. (2018) for the months of March and April pole-

ward of 60◦ N. The total BrO slant column densities are de-

rived from the OMI total BrO (OMBRO) product, by fit-

ting a model function to OMI ultraviolet backscattered ra-

diance at 319–347.5 nm (Choi et al., 2018). The VCDtropo

values are retrieved using the same residual technique and

dynamic climatology stratospheric BrO columns as in Theys

et al. (2011). In the OMI tropospheric AMF calculation, the

assumed BrO shape profile is based on a composite of aircraft

measurements obtained during the NASA Arctic Research of

the Composition of the Troposphere from Aircraft and Satel-

lites (ARCTAS) campaign (Choi et al., 2012). We use the

same selection criteria as in Choi et al. (2018) – SZA < 80◦

and surface reflectivity > 0.6 – and only retain observations

with low cloud contamination (difference between OMI rota-

https://doi.org/10.5194/acp-20-7335-2020 Atmos. Chem. Phys., 20, 7335–7358, 2020
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tional Raman cloud pressure and terrain pressure < 100 hPa).

The uncertainty of OMI and GOME-2 VCDtropo retrieved

over the highly reflective surfaces of polar regions is on the

order of 30 %–50 %.

2.2 Surface O3 measurements

We use hourly in situ O3 measurements at three Arctic sur-

face sites: Utqiaġvik, Alaska (also known by the former

city name and current station name of Barrow; 71.3◦ N,

156.6◦ W; 8 m above sea level), from the NOAA Earth Sys-

tem Research Laboratory; Alert, Nunavut (82.5◦ N, 62.5◦ W;

187 m), from the Canadian Air and Precipitation Monitoring

Network (CAPMoN); and Zeppelin, Spitsbergen (78.9◦ N,

11.8◦ E, 474 m), from the Norwegian Institute for Air Re-

search. We also use hourly surface O3 measurements at sev-

eral sub-Arctic sites from CAPMoN as well as from the

Canadian National Air Pollution Surveillance (NAPS) net-

work and from the United States Clean Air Status and Trends

Network (CASTNET). For the NAPS sites, we only con-

sider sites sampling background air in the categories “for-

est” and “undeveloped rural”, and for CASTNET we ex-

clude sites located in “urban/agricultural” areas. This selec-

tion allows us to avoid more polluted sites, which can be

subject to low winter–spring O3 concentrations associated

with the NO titration of O3. The sub-Arctic sites include

Bonner Lake (49.4◦ N, 82.1◦ W; 242 m), Algoma (47.0◦ N,

84.38◦ W; 411 m), and Egbert (44.2◦ N, 79.8◦ W; 206 m)

from the CAPMoN network, as well as Elk Island (53.68◦ N,

112.87◦ W; 714 m) from NAPS and Woodstock (43.94◦ N,

71.70◦ W; 255 m) from CASTNET.

2.3 The GEOS-Chem chemical transport model

GEOS-Chem is a three-dimensional global chemical trans-

port model (Bey et al., 2001). In this work, we use

GEOS-Chem v11-02d (http://www.geos-chem.org, last ac-

cess: 19 August 2019), driven by the Modern-Era Retro-

spective analysis for Research and Applications, version 2

(MERRA-2) assimilated meteorological fields (Gelaro et al.,

2017), which have a native horizontal resolution of 0.5◦ lat-

itude by 0.625◦ longitude with 72 vertical levels. We regrid

the MERRA-2 fields to a 2◦
× 2.5◦ horizontal resolution and

47 vertical levels with merged levels above 80 hPa for com-

putational expediency. For the time period of the simulations

conducted here (2007–2009), the daily boundary conditions

for sea ice concentrations in MERRA-2 are from the high-

resolution (1/20◦) Operational SST (sea surface tempera-

ture) and Sea Ice Analysis (OSTIA), which uses daily sea

ice concentration products from multiple Special Sensor Mi-

crowave Imager (SSM/I) satellites (Donlon et al., 2012).

Global anthropogenic emissions are from EDGAR v4.2

(Emissions Database for Global Atmospheric Research;

Olivier and Berdowski, 2001) for 1970–2008. Biomass burn-

ing emissions are from the Global Fire Emissions Database

version 4 (GFEDv4) emission inventory (van der Werf et al.,

2017). Biogenic emissions of volatile organic compounds

(VOCs) are from the Model of Emissions of Gases and

Aerosols from Nature version 2.1 (MEGAN 2.1) (Guenther

et al., 2012).

GEOS-Chem simulates detailed HOx–NOx–VOC–O3–

halogen–aerosol tropospheric chemistry. The chemical

mechanism in GEOS-Chem v11-2d was updated to the most

recent recommendations of the Jet Propulsion Laboratory

(JPL) and the International Union of Pure and Applied

Chemistry (IUPAC) as described in Fischer et al. (2014,

2016), Mao et al. (2013), and Travis et al. (2016). This

version of GEOS-Chem includes bromine–chlorine–iodine

halogen chemistry. The bromine chemistry mechanism was

first described in Parrella et al. (2012). The mechanism was

then updated by Schmidt et al. (2016) to include extensive

multiphase chemistry as well as coupling to tropospheric

chlorine chemistry, which provides an important pathway to

recycle bromine radicals. The uptake coefficients for the het-

erogeneous reactions of HOBr, ClNO3, and O3 with Br−

in aerosols, as well as for the reaction of HOBr with Cl−

in aerosols, follow Ammann et al. (2013). The uptake co-

efficient between O3 and Br− considers both bulk and sur-

face reactions. Sherwen et al. (2016a, b) implemented iodine

chemistry and Cl-Br-I interactions. Chen et al. (2017) added

the in-cloud oxidation of dissolved SO2 (S(IV)) by HOBr

in GEOS-Chem, which decreased the global Bry burden by

50 % and resulted in improved agreement with GOME-2

VCDtropo between 60◦ N and 60◦ S. A total of 15 bromine

tracers are transported (Br2, Br, BrO, HOBr, HBr, BrNO2,

BrCl, BrONO2, CHBr3, CH2Br2, CH3Br, IBr, CH2IBr, Br−

on accumulation mode SSA, and Br− on coarse-mode SSA),

with sources from the photolysis of CHBr3; the oxidation of

CHBr3, CH2Br2, and CH3Br by OH radicals; the transport of

reactive bromine from the stratosphere; and SSA debromina-

tion driven by explicit heterogeneous reactions of SSA Br−

with HOBr, ClNO3, and O3.

Open-ocean emissions of SSA are a function of wind

speed and sea surface temperature (SST) as described

in Jaeglé et al. (2011), with updates from Huang and

Jaeglé (2017) for cold ocean waters (SST < 5 ◦C). Two

separate SSA tracers are transported: accumulation mode

SSA (rdry = 0.01–0.5 µm) and coarse-mode SSA (rdry =

0.5–8 µm). Sea salt Br− is emitted assuming a ratio of 2.11×

10−3 kg Br per kg dry SSA, based on the composition of sea

water (Lewis and Schwartz, 2004; Sander et al., 2003). Sea

salt Br− is transported in two tracers as part of accumulation

mode and coarse-mode SSA.

The blowing-snow SSA simulation in GEOS-Chem

The blowing-snow SSA simulation in GEOS-Chem is de-

scribed in Huang and Jaeglé (2017) and Huang et al. (2018).

Blowing-snow SSA emissions are a function of relative hu-

midity, temperature, the age of the snow, surface snow salin-

Atmos. Chem. Phys., 20, 7335–7358, 2020 https://doi.org/10.5194/acp-20-7335-2020
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ity, and wind speed following the parameterization of Yang

et al. (2008, 2010). As in Huang and Jaeglé (2017), we as-

sume N = 5 for the number of SSA particles produced per

snowflake and a mean snow age of 3 d over the Arctic. Two

key parameters controlling the magnitude of blowing-snow

SSA production and subsequent heterogeneous Br− release

are the surface snow salinity and Br− content, both of which

have very few observational constraints. Sea salt and Br− in

surface snow originate from the upward migration of brine

from sea ice, the atmospheric deposition of SSA as well as

gas-phase reactive bromine species, and the contamination

of snow by frost flowers (Abbatt et al., 2012). Domine et

al. (2004) estimate that frost flowers could account for 10 %

of the observed surface snow salinity. The upward migration

of brine is expected to be the dominant source of salinity for

thin snow over sea ice (< 10–17 cm; Domine et al., 2004;

Peterson et al., 2019). As the snow depth gets thicker, the

salinity of surface snow decreases and the influence of atmo-

spheric deposition likely becomes more important (Krnavek

et al., 2012; Nandan et al., 2017). Snow over first-year sea

ice (FYI) is typically more saline than over multi-year sea

ice (MYI), as MYI is desalinated by flushing and gravity

drainage during repeated summer melt cycles.

Krnavek et al. (2012) sampled the chemical composition

of surface snow on land-fast sea ice near Utqiaġvik, Alaska.

They reported a median salinity of 0.7 practical salinity unit

(psu) for 2–3-week-old FYI, 0.1 psu for thicker FYI, and

0.01 psu for MYI. Domine et al. (2004) reported a salinity

of 0.02 psu for MYI near Alert. Peterson et al. (2019) mea-

sured surface snow in FYI and MYI regions near Greenland,

Alaska, and in the central Arctic, finding higher mean salini-

ties for snowpacks less than 17 cm deep (0.15 psu) compared

to deeper snowpacks (0.02 psu). The observed Br− concen-

trations in surface snow over Arctic sea ice is highly vari-

able, ranging from 10−2 to 103 µM (Domine et al., 2004; Kr-

navek et al., 2012; Peterson et al., 2019). This high variabil-

ity is accompanied with either depletion or enhancement in

the bromide-to-sodium (Br−/Na+) ratio relative to sea water

composition. Depletion in Br− relative to seawater indicates

loss to the atmosphere via heterogeneous reactions. Enhance-

ments can be the result of precipitation of hydrohalite (NaCl-

2H2O) below 251 K in brine (Koop et al., 2000; Morin et al.,

2008). Indeed, the laboratory measurements of aqueous NaCl

and sea salt solution droplets of Koop et al. (2000) show a

factor of 12 increase in the Br−/Na+ ratio at 240 K relative

to 273 K. Enhancements in Br− could also be caused by the

deposition of atmospheric aerosol and HBr produced during

bromine explosions onto surface snow (Simpson et al., 2005,

2007b). Domine et al. (2004) report measurements of surface

snow on sea ice near Alert, with a factor of 5 enrichment in

Br− relative to seawater, while surface snow over an Arctic

Ocean site further north displayed a Br− enrichment of 25.

Samples of surface snow on MYI appear to be enhanced in

Br− more often than on FYI (Krnavek et al., 2012), which

suggests that MYI, in addition to FYI, could play an active

role in Arctic boundary layer bromine and chlorine chemistry

(Peterson et al., 2019).

We conduct three GEOS-Chem simulations as part of this

work: a standard simulation (referred to as “STD”), in which

the only source of SSA is from the open ocean, and two sim-

ulations in which we add a blowing-snow source of SSA.

In the first blowing-snow simulation (referred to as “FYI

Snow”), we assume an Arctic surface snow salinity of 0.1 psu

on FYI and 0.01 psu on MYI. In the second blowing-snow

simulation (“FYI+MYI Snow”), we use a salinity of 0.1 psu

on FYI and 0.05 psu on MYI. These two salinities assumed

for MYI are used to examine the role of bromine activation

on MYI. For both blowing-snow simulations, we assume a

surface snow Br− enrichment factor of 5 relative to sea water

(sea salt Br− is emitted, assuming a ratio of 10.55 × 10−3 kg

Br per kg dry blowing-snow SSA emitted). As sea ice age is

not tracked in MERRA-2, for each year we identify the loca-

tion of Arctic MYI from the preceding September minimum

sea ice extent in MERRA-2. The FYI extent is calculated

by subtracting the MYI extent from the total sea ice extent.

Note that this very simple approach does not account for the

advection and melting of MYI between one September to the

next. All simulations are initialized with a 6-month spin-up

in 2006 and then followed by a 3-year simulation for 2007–

2009.

In previous work (Huang et al., 2018; Huang and Jaeglé,

2017), we found that the GEOS-Chem blowing-snow simula-

tion (using 0.1 psu on FYI and 0.01–0.1 psu on MYI) repro-

duced the seasonal cycle and magnitude of SSA mass con-

centrations observed at Utqiaġvik, Alert, and Zeppelin but

that the STD simulation underestimates observations by a

factor of 2–10 during winter and spring. The blowing-snow

simulations also reproduced the seasonal cycle of aerosol ex-

tinction coefficients observed in the lower troposphere (0–

2 km) over Arctic sea ice by the Cloud-Aerosol Lidar with

Orthogonal Polarization (CALIOP) on board the CALIPSO

satellite (Huang et al., 2018).

For comparison with satellite retrievals of VCDtropo, we

sample the model at 09:00–11:00 LT, which corresponds to

the overpass times of GOME-2 in the Northern Hemisphere.

We found that sampling GEOS-Chem at 13:00–15:00 LT,

matching the OMI overpass time, results in less than a 1 %

difference in VCDtropo. We thus only show the model re-

sults for 09:00–11:00 LT. We regrid daily OMI and GOME-2

VCDtropo to a horizontal resolution of 2◦
× 2.5◦ for compar-

ison to GEOS-Chem. The model is sampled on days and lo-

cations of GOME-2 and OMI with available retrievals.
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3 Evaluation of the impact of blowing-snow SSA on

BrO VCDtropo

3.1 Seasonal cycle of VCDtropo in the Northern

Hemisphere

Several previous GEOS-Chem model versions have been

evaluated against GOME-2 BrO VCDtropo. Schmidt et

al. (2016) showed that the inclusion of SSA debromina-

tion resulted in a 50 %–100 % overestimate in BrO in the

Northern Hemisphere. Sherwen et al. (2016a, b) added io-

dine chemistry and disabled SSA debromination, finding rel-

atively good agreement with GOME-2 observations over the

Arctic and the summertime low latitudes and midlatitudes.

Chen et al. (2017) enabled SSA debromination and added

the in-cloud oxidation of dissolved S(IV) with HOBr to

the model version of Schmidt et al. (2016) without iodine

chemistry. They found improved agreement with GOME-2

VCDtropo over low latitudes and midlatitudes but underesti-

mations by a factor of 3–10 over high latitudes. Our STD

simulation includes SSA debromination; the in-cloud oxida-

tion of dissolved S(IV) by HOBr, as well as iodine chemistry;

and chlorine chemistry.

Figure 1a and b shows that with these four components, the

STD simulation agrees well with the GOME-2 VCDtropo at

0–30 and 30–60◦ N averaged for 2007–2009. Over the Arc-

tic (> 60◦ N), however, the STD simulation underestimates

GOME-2 and OMI observations by up to 50 % during spring

(Fig. 1c). Note that we do not show monthly mean GOME-2

VCDtropo at 60–90◦ N for November–February, as less than

70 % of the polar region has valid data (SZA is generally

greater than 80◦ for these months).

The 2007–2009 GOME-2 and OMI VCDtropo val-

ues display a March–April maximum of ∼ 3–3.5 ×

1013 molecules cm−2 poleward of 60◦ N (Fig. 1c). The in-

clusion of blowing-snow SSA emissions in the GEOS-Chem

FYI Snow simulation increases the modeled springtime

VCDtropo by 42 % in March and 52 % in April, improving the

agreement with satellite retrievals (Fig. 1c). The FYI+MYI

Snow simulation increases the modeled VCDtropo by another

10 %–20 % in March and April. Both blowing-snow simula-

tions are within 5 %–20 % of the observed VCDtropo values

in March and April; however they predict too rapid of a de-

crease in VCDtropo in May.

In late summer and fall, when sea ice extent is at its

minimum and blowing-snow SSA emissions are negligible,

GEOS-Chem underestimates GOME-2 VCDtropo by 30 %–

40 %. Over the cloudy summer Arctic, the reaction HOBr +

S(IV) in cloud water provides a sink for HOBr and decreases

the Bry abundance by about 70 %–90 % (Chen et al., 2017).

We hypothesize that including acid displacement HCl from

SSA would lead to an increase in HOBr because of the com-

petition between HOBr+Cl− (which recycles HOBr by pro-

ducing BrCl) and HOBr + S(IV) (which is a sink for HOBr)

in cloud droplets. Indeed, in a subsequent version of GEOS-

Chem, X. Wang et al. (2019) added this source of HCl, find-

ing an increase in BrO, especially in cloudy high latitudes.

3.2 Spatial distribution of springtime Arctic BrO

VCDtropo

Figure 2 shows the spatial distribution of monthly mean

VCDtropo during March and April 2007–2009. In March,

both GOME-2 and OMI exhibit enhanced VCDtropo (3.5–

5 × 1013 molecules cm−2) in an arc between Baffin Bay –

along the west coast of Greenland – and the Laptev Sea – off

the northern coast of Siberia. In April, the observed VCDtropo

reach values > 3.5–4 × 1013 molecules cm−2 over most of

the sea-ice-covered Arctic Ocean. Figure 3a compares the

GOME-2 and OMI VCDtropo poleward of 60◦ N for March

and April 2007–2009, showing that they are highly corre-

lated (r = 0.92, slope = 0.99), with OMI being 13 % higher

than GOME-2.

As shown in Figs. 2 and 3d, the GEOS-Chem

STD simulation predicts VCDtropo lower than 2.5–3 ×

1013 molecules cm−2 in March–April, with little spatial vari-

ability compared to observations (r = 0.22–0.36). The nor-

malized mean bias (NMB = 100×
∑

(Mi −Oi)/
∑

Oi , with

observations Oi and model Mi summed poleward of 60◦ N)

is −41 % compared to OMI and −34 % compared to GOME-

2. The FYI Snow simulation has more success at reproduc-

ing the magnitude of the observed VCDtropo in March and

April (NMB = −12 % relative to OMI and NMB = +1 %

relative to GOME-2), as well as their spatial distribution (r =

0.70–0.76). The VCDtropo values predicted by the FYI+MYI

Snow simulation agree better with OMI (NMB = +2 % and

r = 0.76) but overestimate GOME-2 (NMB = +17 % and

r = 0.79). Similar to the satellite retrievals in March, the FYI

Snow and FYI+MYI Snow simulations display the largest

VCDtropo over the Canadian Arctic Archipelago (Fig. 2),

with secondary maxima over Baffin Bay, the Greenland

Sea, and the East Siberian Sea. In April, the VCDtropo

in the FYI Snow simulation underestimates GOME-2 and

OMI throughout the Arctic, but the FYI+MYI Snow simu-

lation overestimates satellite observations in the high Arctic

(> 80◦ N), while underestimating observations at 70–80◦ N.

This suggests spatial variability in salinity and/or Br− en-

hancement for snow that is not captured in our assumptions

of spatially uniform values for FYI and MYI. We also find

that the simulated VCDtropo values underestimate observa-

tions over the coastal Arctic, especially in April. This could

be due halogen activation from snow over land (Simpson et

al., 2005), which is not considered in our simulation, as we

assume zero salinity and Br− content in continental snow.

3.3 Daily variations in pan-Arctic BrO VCDtropo

Figure 4a shows that GOME-2 daily mean VCDtropo val-

ues poleward of 60◦ N are highest in March–April and then

decrease in May. The OMI VCDtropo values in March and
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Figure 1. Seasonal variation in 2007–2009 monthly mean tropospheric BrO vertical column densities (VCDtropo in units of

1013 molecules cm−2) observed by GOME-2 (black circles) and OMI (gray triangles in panel c for April and May) and simulated with

GEOS-Chem over (a) 0–30◦ N, (b) 30–60◦ N, and (c) 60–90◦ N. The three GEOS-Chem simulations shown are the standard simulation

(STD, green line) and two blowing-snow simulations (FYI Snow, orange line, and FYI+MYI Snow, purple line). The black and gray error

bars represent 1 standard deviation about the monthly mean GOME-2 and OMI VCDtropo. For each latitude bin, we only show means for

months where at least 70 % of the surface area has valid satellite observations.

Figure 2. Spatial distribution of VCDtropo in March (top row) and April (bottom row) 2007–2009. Satellite retrievals from GOME-2 and

OMI are compared to the GEOS-Chem FYI+MYI Snow, FYI Snow, and STD simulations.

April display a similar day-to-day variability as GOME-2

observations. Overall the FYI+MYI Snow simulation shows

good agreement with the magnitude and daily variability of

the combined mean GOME-2 and OMI VCDtropo (NMB =

−8.3 %, r = 0.85). While the FYI+MYI Snow simulation

reproduces the March–April VCDtropo, it predicts too rapid

of a decrease in May for all 3 years (Fig. 4a). The differ-

ence between the FYI Snow and MYI+FYI Snow simula-

tions is the largest in April as polar sunrise reaches the high

Arctic, where the majority of MYI is located. Most of the

BrO enhancements in the two blowing-snow simulations oc-

cur below 1 km altitude, occasionally extending to 2 km (see

Fig. S1a and b in the Supplement).

As discussed in previous studies (Choi et al., 2018;

Nghiem et al., 2012; Richter et al., 1998; Salawitch et al.,

2010; Theys et al., 2011) satellite observations show the fre-

quent occurrence of “BrO hotspots” over Arctic sea ice dur-

ing spring. For this study, we define a BrO hotspot when local

VCDtropo values exceed 4.5×1013 molecules cm−2, which is

the 90th percentile of GOME-2 VCDtropo poleward of 60◦ N

in March–April. For OMI, the corresponding 90th percentile

is 5.1 × 1013 molecules cm−2. We use these respective cri-

teria to calculate the daily area covered by BrO hotspots

as observed by GOME-2 and OMI. The episodic nature of

GOME-2 and OMI BrO hotspots is apparent in Fig. 4b,

which shows a large degree of daily variability, with events

lasting between a few days and 2 weeks. The light-orange

shading in Fig. 4 identifies multi-day events (> 5 d) when

the GOME-2 hotspot area exceeds 2 × 106 km2. There are

two such events in both 2007 and 2008 and three events in

2009 (Fig. 4b). These events reach maximum extents of 4–

6×106 km2. For comparison, the mean sea ice extent during

March–April poleward of 60◦ N is ∼ 10 × 106 km2 (with a

split of ∼ 65 % to 35 % between FYI and MYI).
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Figure 3. (a) Scatterplot of GOME-2 and OMI monthly mean

VCDtropo for March and April 2007–2009 poleward of 60◦ N.

(b) Scatterplot of VCDtropo calculated with the FYI+MYI Snow

simulation and retrieved by GOME-2 (orange circles) and OMI

(blue circles). (c) Same as panel (b) but for the FYI Snow simula-

tion. (d) Same as panel (b) but for the STD simulation. The normal-

ized mean bias (NMB; see definition in Sect. 3.1), Pearson correla-

tion coefficient, and slope are shown in each panel. For panel (b),

the slope and intercept of the reduced-major-axis regression line

(solid line) are also indicated. The dashed line corresponds to the

1 : 1 line.

We apply the OMI threshold (VCDtropo > 5.1 ×

1013 molecules cm−2) to the GEOS-Chem simulations.

On average, the FYI+MYI Snow simulation reproduces

the observed spatial extent of BrO hotspots to within 4 %

and captures the timing of the two large-scale episodes in

2007 (26 March–4 May and 10–20 May 2007) and the two

episodes in 2008 (7–17 March and 1–8 April 2008). For

2009, the FYI+MYI Snow simulation predicts two episodes

(5–15 March and 11–23 April), but the aerial extent of these

episodes is overestimated, and the simulation misses the

third episode on 6–19 May 2009 (Fig. 4b). In the model,

the variability in BrO hotspots is driven by the temporal

variations of the blowing-snow SSA burden (Fig. 4c).

3.4 Two case studies of large BrO explosion events

Figure 5 shows the daily spatial distribution of VCDtropo on

25–30 March 2007, corresponding the largest BrO hotspot

episode observed by GOME-2 and OMI during our study pe-

riod (Fig. 4a and b). The GOME-2 and OMI VCDtropo exceed

7 × 1013 molecules cm−2 (up to 15 × 1013 molecules cm−2)

over the sea-ice-covered region in the high Arctic region

(> 70◦ N). The enhanced VCDtropo occurrences start on

25 March over the East Siberian Sea and then rotate counter-

clockwise, reaching the Beaufort Sea on 27 March and the

Canadian Arctic Archipelago on 28–30 March 2007. This

event was previously discussed in Begoin et al. (2010) and

Choi et al. (2018). Begoin et al. (2010) used the FLEX-

PART (FLEXible PARTicle) particle dispersion model to link

the enhanced GOME-2 VCDtropo to a cyclone with very

high surface wind speeds, favorable for generating blowing-

snow SSA. Choi et al. (2018) found that the spatial pattern

of OMI VCDtropo was consistent with that of the GEOS-

5 simulated blowing-snow SSA burden on both FYI and

MYI, while restricting the blowing-snow emissions to FYI

only did not agree as well with the observed VCDtropo.

Our FYI+MYI Snow simulation reproduces the evolution of

this BrO hotspot, although the magnitude of the modeled

VCDtropo overestimates observations after 28 March 2007.

The main difference between the FYI Snow and FYI+MYI

Snow simulations is on 25–26 March 2007, when the high

winds are located over the North Pole, where MYI is found

(Figs. 5 and S2). As there are no valid GOME-2 and OMI

retrievals at these high latitudes (SZA > 80◦), we cannot as-

sess which simulation agrees better with observations for this

case study.

Figure 6 shows the daily distribution of VCDtropo on

14–19 April 2007. During this event, there is a factor of

1.5 difference in pan-Arctic VCDtropo calculated with the

FYI Snow and FYI+MYI Snow simulations (Fig. 4a). The

GOME-2 and OMI VCDtropo show high values (> 5 ×

1013 molecules cm−2) being maintained over the North Pole

(Fig. 6). The MERRA-2 meteorological fields predict high

surface winds (> 10–12 m s−1) in that area, which is covered

by MYI (Fig. 7, bottom row). The VCDtropo values calcu-
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Figure 4. Time series of daily mean BrO VCDtropo, tropospheric BrO hotspots area, and blowing-snow SSA burden over high latitudes

(> 60◦ N) between February and June for 2007–2009. (a) Time series of daily VCDtropo (in 1013 molecules cm−2) averaged poleward of

60◦ N for GOME-2 (black circles) and OMI (gray triangles) and simulated with GEOS-Chem (FYI+MYI Snow, purple; FYI Snow, orange;

and STD, green). (b) The daily area extent of BrO hotspots (in units of 106 km2) for GOME-2, OMI, and GEOS-Chem. See Sect. 3.3

for the definition of BrO hotspot areas. Note that the total area poleward of 60◦ N is 34.2 × 106 km2. (c) Time series of the daily mean

blowing-snow SSA burden (mg m−2) for the FYI+MYI Snow and FYI Snow simulations. The blowing-snow SSA burden is obtained as the

difference between the blowing-snow and STD simulations. The normalized mean bias (NMB) and Pearson correlation coefficients displayed

in panels (a) and (b) are relative to the combined GOME-2 and OMI time series. The events highlighted in light orange are defined as periods

when GOME-2 or OMI BrO hotspots cover more than 2×106 km2 for longer than 5 d. We only show days where valid satellite observations

are available over at least 70 % of the surface area poleward of 60◦ N. The dashed lines in panels (a) and (c) correspond to the GEOS-Chem

daily means poleward of 60◦ N for days with less than 70 % of valid observations.

lated by the FYI Snow simulation show little enhancement

over the North Pole (Fig. 7), while the FYI+MYI Snow sim-

ulation better captures the magnitude and shape of the ob-

served enhancement (Fig. 6), suggesting that blowing-snow

SSA emissions over MYI can be a significant source of BrO.

Overall, we find that the FYI+MYI Snow simulation cap-

tures reasonably well the spatial and temporal distribution

of the observed VCDtropo, as well as the spatial extent and

frequency of BrO hotspots in March and April. In our sim-

ulation, blowing-snow SSA emissions on MYI account for

20 %–30 % of the VCDtropo enhancement and could thus rep-

resent an important source of bromine activation. This is con-

sistent with previous studies, which have suggested that, in

addition to FYI, MYI could play a significant role in halo-

gen activation. Gilman et al. (2010) used back trajectories to

calculate sea ice exposure of air masses observed during the

International Chemistry Experiment in the Arctic Lower Tro-

posphere (ICEALOT) ship-based study, finding that expo-

sure to both FYI and MYI was the best predictor of reduced

O3 levels. Choi et al. (2018) reported that the frequency of
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Figure 5. Daily 25–30 March 2007 (in the date format of month/day/year) distribution of BrO VCDtropo for GOME-2, OMI, and GEOS-

Chem (FYI+MYI Snow simulation). Also shown are the blowing-snow SSA mass burdens (mg m−2) and surface O3 mixing ratios (ppbv)

for the FYI+MYI Snow simulation. The gray areas in the first two rows correspond to regions with no BrO retrievals. Note that polar sunrise

occurred equatorward of 80◦ N.

springtime BrO explosion events observed by OMI for 2005–

2015 was strongly correlated with blowing-snow SSA emis-

sions over all sea ice, but they found little-to-no correlation

when only FYI was considered as a source of blowing-snow

SSA. Rhodes et al. (2017) found that simulations including

blowing-snow SSA emissions on MYI had better skill at re-

producing surface observations of SSA in the Arctic com-

pared to simulations without SSA emissions on MYI. More

generally, low O3 and/or high BrO VCDtropo values have

been observed over and downwind of regions with a high

fraction of MYI such as the Canadian Arctic Archipelago and

the eastern Beaufort Sea (Bottenheim and Chan, 2006; Choi

et al., 2012; Halfacre et al., 2014; Koo et al., 2012; Richter

et al., 1998; Salawitch et al., 2010). In contrast to the gener-

ally good agreement in March and April, during May our

simulation is systematically too low compared to GOME-

2 VCDtropo (Figs. 1c and 4a, b). In Sect. 5 we will discuss

how the recycling of bromine deposition to snowpack in late

spring could propagate blowing-snow-induced halogen acti-

vation into May.

4 Impact of blowing-snow SSA on tropospheric O3

over the Arctic

4.1 Comparison to hourly surface O3 observations

We evaluate the ability of our simulations to capture ODEs

via comparisons to hourly O3 observations at several Arc-

tic and sub-Arctic sites for 1 March–31 May 2007 (Fig. 8).

Observations at Utqiaġvik and Alert show frequent occur-

rences of low O3 mixing ratios (< 10 ppbv), maintained for

1–7 d. These events are somewhat less frequent at Zeppelin.

Figure 8 shows that FYI+MYI Snow simulation reproduces

only 25 %–30 % of the ODEs at Utqiaġvik and Alert, such

as the 8–18 April and 26 April–10 May depletion events at

Utqiaġvik as well as the April events at Alert. The model-

predicted magnitude of O3 depletion at those sites is a factor

of 2 lower than the observed values. The FYI+MYI Snow

simulation performs somewhat better at Zeppelin, where it

captures the timing and magnitude of 40 % of the observed

events, in particular between late March and late April. Our

simulation thus misses 60 %–75 % of observed ODEs at

those three Arctic sites, including several events in March

and late May at Utqiaġvik, as well as the sustained May

events at Alert, and the ODEs in late May at Zeppelin.
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Figure 6. Daily 14–19 April 2007 (in the date format of month/day/year) distribution of BrO VCDtropo from GOME-2, OMI, and GEOS-

Chem (FYI+MYI Snow simulation). Also shown are the blowing-snow SSA burdens (mg m−2) and surface O3 mixing ratios (ppbv) in the

FYI+MYI Snow simulation.

Figure 7. Daily 14–19 April 2007 (in the date format of month/day/year) distribution of BrO VCDtropo and blowing-snow SSA burden from

the GEOS-Chem FYI Snow simulation. The bottom row shows the distribution of sea ice extent for FYI and MYI.

Observed surface O3 depletion events can be caused by the

advection of upwind O3 poor air and/or local depletion (Bot-

tenheim and Chan, 2006; Halfacre et al., 2014; Hopper et

al., 1998; Jacobi et al., 2006; Simpson et al., 2007b, 2017).

The rapid recovery of surface O3 after a depletion event is

often due to the turbulent vertical mixing of O3-rich free-

tropospheric air down to the surface or to the advection of

O3-rich continental air (Bottenheim et al., 2009; Gong et al.,

1997; Hopper et al., 1998; Jacobi et al., 2010; Moore et al.,

2014; Morin et al., 2005). Furthermore, some ODEs can be

highly localized. Using ice-tethered buoys over coastal re-

gions and over the Arctic Ocean, Halfacre et al. (2014) found

that large areas of the Arctic Ocean are partially depleted in

O3 during spring with local imbedded areas (∼ 200–300 km)
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Figure 8. Time series of hourly surface O3 (ppbv) at three Arctic sites (a–c) and five sub-Arctic sites (d–h) for 1 March–31 May 2007 (in the

date format of month/day): (a) Utqiaġvik (Barrow), Alaska, USA; (b) Alert, Nunavut, Canada; (c) Zeppelin, Spitsbergen, Norway; (d) Elk

Island, Alberta, Canada; (e) Bonner Lake, Ontario, Canada; (f) Algoma, Ontario, Canada; (g) Egbert, Ontario, Canada; and (h) Woodstock,

New Hampshire, USA. In situ observations are shown with the black lines, while the GEOS-Chem STD, FYI Snow, and FYI+MYI Snow

simulations are shown in green, orange, and purple, respectively. The shaded orange area corresponding to the times when the large BrO

hotspot from 26 March to 4 April 2007 is predicted to be observed at the three Arctic sites and then transported to the sub-Arctic sites.

that are more depleted. Morin et al. (2005) report that dy-

namic conditions of the boundary layer near the shore can

lead to very different surface O3 behaviors observed at Alert

compared to at a site over the sea ice 10 km away. Similar re-

sults were found by Jacobi et al. (2006) when comparing O3

observations at Zeppelin Station and nearby (∼ 100–200 km)

ship-based measurements. The coarse resolution of our sim-

ulation (2◦
× 2.5◦) and the general difficulty of models in

reproducing boundary layer depth and vertical mixing pro-

cesses could thus be one explanation for our poor representa-
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tion of ODEs at some of these surface sites. Another explana-

tion is the lack of detailed chlorine chemistry in this version

of GEOS-Chem. In particular, we do not consider acid dis-

placement of Cl− in SSA (Keene et al., 2007) which, together

with bromine chemistry, could act to enhance ODEs. Finally,

our simulation does not include local snowpack Br activa-

tion, which has been shown to lead to surface ODEs when

the stable Arctic boundary layer is decoupled from convec-

tive exchange with the free troposphere (Custard et al., 2017;

Peterson et al., 2015, 2017; Pratt et al., 2013; S. Wang et al.,

2019).

4.2 Spatiotemporal distribution of O3 depletion in

GEOS-Chem

Figure 9 shows the spatial distribution of monthly mean sur-

face O3 mixing ratios calculated in the FYI+MYI Snow sim-

ulation as well as the decrease in surface O3 (1O3) rela-

tive to the STD simulation for March and April 2007–2009.

The lowest monthly mean O3 mixing ratios are ∼ 25 ppbv

in March over the Canadian Arctic Archipelago and ∼ 20–

25 ppbv in April over the North Pole (Fig. 9a), with a spatial

distribution corresponding to that of the simulated VCDtropo

(Fig. 2). Note that the low O3 values simulated over Eu-

rope are due to NOx titration. The monthly mean values

from the FYI+MYI Snow simulation are within 8 ppbv of

surface observations at Utqiaġvik (model versus observa-

tion: March 28 ppbv versus 22 ppbv and April 28 ppbv versus

20 ppbv), Alert (model versus observation: March 29 ppbv

versus 33 ppbv and April 27 ppbv versus 27 ppbv), Zeppelin

(model versus observation: March 32 ppbv versus 39 ppbv

and April 27 ppbv versus 31 ppbv), and Elk Island (model

versus observation: March 28 ppbv versus 36 ppbv and April

35 ppbv versus 38 ppbv). The mean values of surface 1O3

increase from 4–8 ppbv (15 %–30 % depletion relative to

the STD simulation) in March to 8–14 ppbv (30 %–40 %)

in April, when sufficient sunlight is available to drive pho-

tochemistry at high latitudes (Fig. 9b). Poleward of 60◦ N,

the FYI+MYI Snow simulation displays a pan-Arctic O3 de-

crease of 3.7 ppbv (11 %) in March and 8.3 ppbv (23 %) rel-

ative to the STD simulation.

We define the frequency of ODEs as the percent of time

when more than 20 ppbv O3 is lost due to blowing snow

(1O3 > 20 ppbv; Fig. 9c). Applying this definition to the

FYI+MYI Snow simulation, we find that ODEs occur up to

1 %–5 % of the time in March, increasing to up to 15 %–25 %

of the time in April as sunlight extends to higher latitudes

(Fig. 9c). Using an ODE definition including more moder-

ate events (1O3 > 10 ppbv), we find that poleward of 70◦ N

ODEs occur 20 %–60 % of the time in April (Fig. 9d). The

median aerial extent of ODEs (1O3 > 20 ppbv) simulated in

the FYI+MYI Snow simulation is 0.35×106 km2 (horizontal

extent of ∼ 330 km), with some of the largest ODEs extend-

ing over areas of 1.5–7×106 km2 (∼ 700–1500 km horizon-

tal extent). Our results are consistent with the 282 km median

size of major ODEs inferred by Halfacre et al. (2014) using

ice-tethered buoys combined with back trajectories.

The decrease in surface O3 due to blowing-snow SSA is

60 % larger in the FYI+MYI Snow simulation compared to

the FYI Snow simulation (Fig. 10a). The time series of pan-

Arctic daily mean 1O3 for the FYI+MYI Snow simulation

at different altitudes shows that 1O3 is uniform in the bot-

tom 500 m altitude and extends to 1000 m altitude, where the

model-calculated 1O3 is about half of the surface 1O3. At

2000 m, 1O3 is generally below 4 ppbv (Fig. 10b). This is

consistent with ozonesonde profiles, which indicate that de-

pletion events are confined to the lowest 1000 m with an av-

erage height of the top of the layer at 500 m (Hopper et al.,

1998; Oltmans et al., 2012; Tarasick and Bottenheim, 2002).

We find that the Arctic tropospheric O3 burden (> 60◦ N) de-

creases by 3 % in March and 6 % in April in the FYI+MYI

simulation relative to the STD simulation.

In our simulation, the timing of the maximum 1O3 takes

place 4–5 d after the maximum in the blowing-snow SSA

burden (Figs. 4c and 10b), reflecting increasing O3 loss

as BrO concentrations increase. This is illustrated during

the 25–30 March 2007 event: the pan-Arctic blowing-snow

SSA burden and VCDtropo reach their maximum values on

27 March, while the lowest values for surface O3 occur 4 d

later on 31 March (Fig. 5, bottom row). By 29–30 March

the blowing-snow SSA burden is back to low values over

the Arctic, but the VCDtropo values are still elevated, and

low surface O3 mixing ratios are predicted throughout the

Arctic. This can be explained by the different lifetimes of

these species over the springtime Arctic: ∼ 1 d for SSA, 4–

7 d for the Bry family (consisting of all the gas-phase inor-

ganic bromine species), and 30–40 d for O3.

4.3 Transport of O3-depleted Arctic air to lower

latitudes

In some instances, large-scale blowing-snow-induced

bromine activation can influence surface O3 in sub-Arctic

regions. The large BrO explosion and associated O3 deple-

tion from late March to early April 2007 (Fig. 4a and b)

illustrate this. The light-orange shading in Fig. 8 corresponds

to the times when this BrO explosion is transported to the

three Arctic sites and several sub-Arctic sites. The GEOS-

Chem FYI+MYI Snow simulation shows the transport

of O3-depleted air to Utqiaġvik on 25–27 March 2007,

with observations showing much stronger depletion than

the model (Fig. 8a). This air mass is observed at Alert on

31 March–4 April, and the eastern edge of that O3-depleted

air reaches Zeppelin around the same time (Fig. 8b, c). The

O3-depleted air is then transported southward over Hudson

Bay and towards the northeastern United States on 4–9 April

(Figs. 5 and 11), mostly below 1000 m altitude. At the

synoptic level, a surface low was sweeping across the United

States from the central Rockies to the Great Lakes in early

April, bringing sub-freezing Arctic air behind its cold front

https://doi.org/10.5194/acp-20-7335-2020 Atmos. Chem. Phys., 20, 7335–7358, 2020



7348 J. Huang et al.: Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and O3

Figure 9. Monthly mean distribution of surface O3 simulated with GEOS-Chem for March (top row) and April (bottom row) 2007–2009.

(a) Surface O3 mixing ratios in the GEOS-Chem FYI+MYI Snow simulation. The circles are color-coded by monthly mean surface O3

observed at three Arctic (Utqiaġvik, Alert, and Zeppelin) and one sub-Arctic site (Elk Island). (b) Decrease in surface O3 (1O3, ppbv) due

to blowing snow obtained as the difference between the STD and FYI+MYI Snow simulations. (c) Occurrence frequency of ODEs (in %),

defined as the percent of time that more than 20 ppbv of O3 is lost due to blowing snow (1O3 > 20 ppbv). (d) Occurrence frequency of

ODEs, defined as 1O3 > 10 ppbv.

Figure 10. Time series of daily mean surface O3 and decrease in

surface O3 (1O3) due to blowing snow at high latitudes (> 60◦ N)

between February and June 2007–2009. (a) Daily mean surface

O3 mixing ratios averaged poleward of 60◦ N for the STD (blue

line), FYI Snow (purple), and FYI+MYI Snow (red line) GEOS-

Chem simulations. (b) Daily mean 1O3, obtained as the difference

between the FYI+MYI Snow and STD simulations at the surface

(solid line), 500 m altitude (dotted line), 1000 m altitude (dashed

line), and 2000 m altitude (dash-dotted line). The events highlighted

in light orange are defined as periods when GOME-2 or OMI BrO

hotspots cover more than 2 × 106 km2 for longer than 5 d.

with record-breaking cold temperatures being measured

over the central plains and much of the southeastern United

States (NOAA/USDA, 2008).

Between 2 and 7 April, observed O3 mixing ratios at

five sub-Arctic sites from Elk Island (53.7◦ N) to Woodstock

(43.9◦ N) decreased from background levels of 40 ppbv down

to 10–20 ppbv (Fig. 8). This decrease is reproduced by both

the FYI and FYI+MYI Snow simulations, which show that

enhanced VCDtropo and blowing-snow SSA were transported

over Hudson Bay towards the Great Lakes region (Fig. 11a–

c). By the time the polar air mass reached the northeastern

United States, the BrO VCDtropo were back to normal levels,

but because of its longer lifetime, O3 was 5–10 ppbv lower

than background mixing ratios as shown by the FYI+MYI

Snow simulation (Fig. 11d). This decrease in surface O3

was observed at NAPS and CASTNET surface sites through-

out southeastern Canada and the northeastern United States

(Fig. 11d).

Ridley et al. (2007) discuss a similar transport event of

O3-depleted air from the Canadian Arctic Archipelago and

nearby Arctic Ocean to Hudson Bay observed in April 2000

during the Tropospheric Ozone Production about the Spring

Equinox (TOPSE) aircraft campaign. During that event, O3

levels were reduced from 30 to 40 ppbv down to values as

low as 0.5 ppbv in a large area below 500 m altitude. Over

the 3-year period that we examined, our simulations suggest

that transport of O3-depleted air (1O3 > 20 ppbv) to Hud-

son Bay occurs 1 %–10 % of the time (0.3–3 d per month) in

March and in April (Fig. 9c), with the transport of more mod-

erate O3 depletion (1O3 > 10 ppbv) taking place 10 %–20 %
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Figure 11. Mean 5–9 April 2007 VCDtropo for (a) GOME-2 and (b) the GEOS-Chem FYI+MYI Snow simulation. Mean 5–9 April 2007

(c) blowing-snow SSA burden and (d) surface O3 mixing ratios for 5–9 April 2007 from the GEOS-Chem FYI+MYI Snow simulation.

Surface O3 observations are shown as color-coded symbols in panel (d), with the squares corresponding to the sub-Arctic sites from Fig. 8.

The letter numbering for (e)–(h) corresponds to the panel numbers in Fig. 8.

of the time (3–6 d per month). In March–April 2008, mea-

surements in the ice-free North Atlantic showed the transport

of O3-poor air from the Arctic basin down to 52◦ N during

the ICEALOT cruise (Gilman et al., 2010): a 13 ppbv de-

crease in O3 was accompanied by a simultaneous decrease in

the acetylene-to-benzene ratio, indicating exposure to halo-

gen oxidation. In our simulation, we find that the transport

of air mass with 1O3 > 10 ppbv air to sub-Arctic latitudes

occurs with a frequency of 5 %–10 % (1.5–3 d per month)

down to 50◦ N and 1 %–5 % (< 1.5 d per month) down to

40◦ N (Fig. 9d) and that this transport appears to be favored

over Hudson Bay extending to the northeastern United States

and the western Atlantic off Nova Scotia (Fig. 9d). At mid-

latitudes (30–60◦ N), the FYI+MYI Snow simulation results

in a mean surface O3 decrease of 1.2 ppbv (3.3 %) in March–

April, thus a small but non-negligible contribution.

5 Atmospheric deposition on snow as a source of

salinity and bromide

We use the results of the FYI Snow simulation to examine the

potential role of the atmospheric deposition of SSA and gas-

phase Bry as a source of salinity and bromide to snow on sea

ice. Snow composition profiles indicate that atmospheric de-

position can sometimes be a more important source of salin-

ity and Br− than upward brine migration, especially over

MYI and in deep snowpack (> 10–17 cm) over FYI (Domine

et al., 2004; Krnavek et al., 2012; Peterson et al., 2019). Fig-

ure 12a shows the evolution of deposition on sea ice (pole-

ward of 60◦ N) for Na+ and for total bromine (sum of partic-

ulate Br− and gas-phase Bry) in the GEOS-Chem FYI Snow

simulation. Between September and May, the deposition of

Na+ on snow-covered sea ice has an average daily value of

2.2×106 kg d−1. For total bromine (SSA Br− and gas-phase

Bry), the average daily value is 6.7×104 kg d−1. Open-ocean

SSA and blowing-snow SSA account nearly equally to these

deposition fluxes.

From October to March the deposition of total bromine

tracks that of Na+, as both are derived from SSA (Fig. 12a).

Starting in late March, the deposition of Na+ decreases

rapidly following the decrease in blowing-snow SSA emis-

sions (Fig. 4c) due to slower wind speeds and warmer

temperatures (Huang and Jaeglé, 2017). The deposition of

bromine remains high for another month, however, as once

bromine activation starts in early spring, a large fraction of

Br deposition is in the form of Bry , in particular HBr, which

is the end product of reactive bromine chemistry. In April–

May, deposition of Bry accounts for more than half of to-

tal bromine deposition (Fig. 12a). As Bry has a longer life-
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Figure 12. Modeled evolution of the deposition and Br/Na en-

richment factor on sea ice (> 60◦ N) for 2007 calculated with the

FYI Snow simulation. (a) Total deposition on sea ice (in units of

103 kg d−1) for Na+ (black line, left axis), Br−+Bry (red line, right

axis), and Bry only (dashed red line, right axis). (b) Modeled Br/Na

enrichment factor (EF; black line) relative to seawater in deposition

over sea ice; see Sect. 5 for the definition of EF. The orange circles

show the enrichment factors observed during the NETCARE cam-

paign at Alert, Nunavut (Macdonald et al., 2017). The dashed black

line is the modeled EF sampled at Alert. A 10 d boxcar smoothing

has been applied to all the modeled time series between September

and May. The horizontal dotted line represents the value EF=5, as-

sumed for the emitted blowing-snow SSA. (c) Surface snow salinity

due to the cumulative SSA deposition on sea ice for 1 February–

30 April assuming a 1 cm snow accumulation rate for that period

(see text). The red line shows the location of MYI.

time against deposition than particulate Br− and Na+, Bry
shows a more gradual decrease in deposition in April and

May. This behavior is consistent with observations of freshly

fallen snow at Alert during the Network on Climate and

Aerosols Research (NETCARE) campaign, showing a broad

spring peak in Br− deposition between late March and late

May (Macdonald et al., 2017). A similar increase of Br− in

snowfall samples after polar sunrise was reported at Alert

by Toom-Sauntry and Barrie (2002). Furthermore, Spolaor

et al. (2013, 2014) found a strong seasonal variability of Br−

in polar firn at both Arctic and Antarctic sites, with greater

Br− values in spring and summer compared to winter.

We derive the Br− / Na+ enrichment factor (EF) of deposi-

tion relative to seawater composition (which has a Br−/Na+

mass ratio of 0.00625 g g−1) as

EF =

(

[

Br− + Bry
]

[

Na+
]

)

deposition

/

(

[

Br−
]

[

Na+
]

)

seawater

. (1)

EF is calculated for each day and each model grid box

and then surface-area-weighted over sea ice to obtain the

daily time series of pan-Arctic EF shown in Fig. 12b. The

model-calculated EF is fairly constant between September

and February, with values of ∼ 3–10. Starting in late March,

the divergence between bromine and Na+ deposition leads

to an increase in EF to a value of 14 by the end of April,

followed by a more rapid increase in May up to a value of

∼ 60. In May, the mean model-calculated EF of deposition

is 30. These values are remarkably consistent with the EF

measured during the NETCARE campaign at Alert (Mac-

donald et al., 2017), as shown in Fig. 12b, with mean ob-

served values of EF ∼ 7 between September and February,

15 in April, and 25 in May. Similarly, Toom-Sauntry and

Barrie (2002) observed an increase in EF from low enrich-

ment in the dark winter months (median of 1.5–5) to a large

enrichment (median of 20–72) after polar sunrise. In our sim-

ulation of the blowing-snow SSA, we assumed a constant

value of EF = 5, which appears to underestimate the EF of

snow in May by a factor of 2–3. This springtime increase in

the enrichment of Br− in snow over sea ice could thus act

to propagate bromine explosions and ODEs into May and

could explain our systematic underestimation of observed

VCDtropo in May. Using a one-dimensional model, Piot and

von Glasow (2008) compared modeled and observed depo-

sition on snow at Utqiaġvik, demonstrating that 75 % of de-

posited bromine may be re-emitted into the gas phase as Br2

or BrCl. They proposed that cycles of deposition and re-

emissions of bromine from snow could thus result in a “leap-

frogging” process and explain the observations of the pro-

gressive Br− enrichment of snow in coastal Arctic regions

with distance inland (Simpson et al., 2005). Indeed, Peter-

son et al. (2018) observed enhanced BrO up to 200 km in-

land over snow-covered tundra near Utqiaġvik. Our simula-

tions suggest that a similar mechanism could occur in snow

over sea ice via repeated cycles of blowing-snow SSA subli-

mation and the deposition of reactive bromine. These cycles

could thus be important in propagating bromine explosions

in space (onto coastal snow-covered land) as well as in time

on sea ice (into late spring).

We now use the model-simulated Na+ deposition (FYI

Snow simulations) on the sea-ice-covered Arctic Ocean to

estimate the salinity of surface snow due to SSA deposition.

In our simulation, wet and dry deposition contribute nearly

equally to SSA deposition. Over the 3-month period between

1 February and 31 April, the cumulative SSA deposition on

Atmos. Chem. Phys., 20, 7335–7358, 2020 https://doi.org/10.5194/acp-20-7335-2020



J. Huang et al.: Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and O3 7351

Arctic sea ice is 10.3 × 108 kg SSA in the FYI Snow simula-

tion. Snow depth on sea ice is not calculated in MERRA-2,

and reanalyses tend to have highly uncertain solid precipi-

tation in polar regions (Lindsay et al., 2014; Uotila et al.,

2019), so we rely on the limited observations available. The

Warren et al. (1999) climatology, which is based on 1954–

1991 Soviet drifting stations measurements on Arctic MYI,

shows that snow depth increases from 29.7 to 34.4 cm dur-

ing these 3 months, resulting in 4.7 cm snow accumulation.

This is likely an overestimate of the pan-Arctic snow depth

because MYI tends to have thicker snow and these measure-

ments represent conditions from past decades (Kwok and

Cunningham, 2008). Indeed, the 2003–2008 AMSR-E (Ad-

vanced Microwave Scanning Radiometer for the Earth Ob-

serving System) snow depth retrievals over FYI compiled by

Zygmuntowska et al. (2014) show much lower snow depths,

increasing from 18 cm in February to 19 cm in May, thus a

1 cm snow accumulation. These two estimates in snow ac-

cumulation result in pan-Arctic snow accumulations of 1014

to 2.2 × 1013 kg (sea ice extent is 11×106 km2, and fresh

snow has a density of 200 kg m−3), which combined with

our calculated SSA deposition results in a mean salinity of

0.01–0.04 psu of surface snow due to deposition. Figure 12c

shows the spatial distribution of snow salinity due to SSA de-

position assuming a 1 cm snow accumulation. High salinities

(> 0.05 psu) are calculated in sea ice regions near the ice-free

open ocean in the North Atlantic and Bering Sea, with lower

values on FYI (0.02–0.05 psu) and MYI (0.01–0.03 psu). De-

position could thus represent a significant source of salinity

of surface snow on MYI by the time sunrise reaches high lat-

itudes, and it could also be important for FYI as the snow

gets deeper in late spring (Petty et al., 2018; Warren et al.,

1999).

6 Conclusions

We used the GEOS-Chem model to examine the impact of

blowing-snow SSA on bromine chemistry and O3 during

Arctic spring. We conducted two blowing-snow simulations

assuming a 0.1 psu surface snow salinity on FYI and differ-

ent salinities on MYI (0.01 psu for the FYI Snow simula-

tion and 0.05 psu for the FYI+MYI Snow simulation). We

evaluated these simulations against satellite observations of

VCDtropo from GOME-2 and OMI for 2007–2009. We found

that our simulations reproduce the spatiotemporal distribu-

tion of the observed VCDtropo to within −12 % to +17 % in

March and April and capture the spatial extent as well as the

frequency of most large BrO hotspots in March and April.

However, our simulations predicted too rapid a decrease in

VCDtropo in May, while observations showed a more grad-

ual decrease. The FYI+MYI Snow simulation captured ob-

served BrO hotspots over the North Pole better than the

FYI Snow simulation. In our FYI+MYI simulation, blowing-

snow SSA emissions on MYI account for 20 %–30 % of

the VCDtropo enhancement and thus represent a significant

source of bromine activation. In the past, the search for

halogen-containing substrates in polar regions has often fo-

cused on the role of frost flowers, newly formed sea ice, and

FYI snowpack on polar halogen activation because of the

higher salinity of these surfaces and of their snowpack rel-

ative to MYI (e.g., Abbatt et al., 2012; Jacobi et al., 2006;

Kaleschke et al., 2004; Simpson et al., 2007a; Yang et al.,

2010). Our simulations suggest that the role of MYI in halo-

gen activation is likely also important, consistent with results

of several studies (Choi et al., 2018; Gilman et al., 2010; Hal-

facre et al., 2014; Peterson et al., 2019).

The inclusion of blowing-snow SSA in our FYI+MYI

Snow simulation results in a pan-Arctic decrease in sur-

face O3 of 3.7 ppbv (11 %) in March and 8.3 ppbv (23 %)

in April. As most of this decrease is confined to altitudes be-

low 1000 m, the Arctic tropospheric O3 burden decreases by

only 3 %–6 % in March–April. Compared to surface O3 ob-

servations at coastal Arctic sites, we find that our simulation

captures only 25 %–40 % of observed ODEs and often under-

estimates their magnitude. The FYI+MYI simulation misses

60 %–75 % of observed ODEs, in particular the early March

events at Utqiaġvik and most of the May events at Utqiaġvik,

Alert, and Zeppelin. The simulation does reproduce an event

of low O3 Arctic air transport down to 40◦ N, which was ob-

served at multiple sub-Arctic surface sites. We estimate that

these transport events occur in March and April with a fre-

quency of 1.5–3 d per month down to 50◦ N and < 1.5 d per

month down to 40◦ N.

The mixed success of our simulation at capturing the rapid

O3 variations observed at coastal Arctic sites could be related

to the coarse resolution of the model, the difficulty in simu-

lating Arctic boundary layer exchange processes, the lack of

detailed chlorine chemistry, or the fact that we did not in-

clude direct halogen activation by snowpack chemistry. The

locations of the three coastal Arctic sites with surface O3

observations correspond to GEOS-Chem grid box sizes of

∼ 40–90 km (latitude) by 220 km (longitude). It is thus not

surprising that we are not able to capture some surface O3

events which have been shown to have large variability on

scales of 10–100 km (Morin et al., 2005; Jacobi et al., 2006).

Most reanalyses, including MERRA-2, tend to simulate Arc-

tic surface temperature inversions that are too weak, likely

due to their low skill simulating turbulent heat fluxes over

sea ice (Graham et al., 2019). Excessive exchange between

the boundary layer and free troposphere would transport O3-

rich free-tropospheric air down to the surface, which might

explain our simulations of ODEs that are too weak com-

pared to observations. The influence of snowpack bromine

chemistry was examined in two previous modeling studies

(Falk and Sinnhuber, 2018; Toyota et al., 2011). These stud-

ies displayed remarkable agreement with surface O3 observa-

tions, in particular at Alert and Utqiaġvik, and reproduced the

synoptic variability in GOME VCD values. However, both

studies systematically underestimated the magnitude of ob-
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served BrO VCDs by at least a factor of 2. These results to-

gether with our GEOS-Chem blowing-snow simulations sug-

gest that most of the VCDtropo enhancements observed by

satellites can be explained by blowing-snow SSA leading to

BrO enhancements over larger vertical (0–2 km) and hori-

zontal scales (pan-Arctic) than snowpack chemistry, but that

in the shallow boundary layer (∼ 50–250 m) over the spring-

time Arctic direct snowpack halogen activation could con-

tribute to Br release and potentially be responsible for the

most severe ODEs. Indeed, some of the strongest ODEs ob-

served at the surface seem to occur when the stable Arctic

boundary layer is decoupled from convective exchange with

the free troposphere (Moore et al., 2014; Seabrook et al.,

2011; S. Wang et al., 2019). Furthermore, as boundary layer

O3 reaches very low levels (< 4 ppbv), BrO production via

Reaction (R3) is suppressed, and atomic Br becomes much

more abundant than BrO (Neuman et al., 2010; S. Wang et

al., 2019), such that satellites would not necessarily observe

co-located O3 depletion and enhanced BrO VCDtropo.

Based on our analysis of the seasonal variation in the

modeled deposition of Na+ and bromine on snow, we pro-

pose that the progressive enrichment of bromine in de-

position onto sea ice could help propagate blowing-snow

SSA bromine activation into May, even as the magnitude

of blowing-snow SSA emissions starts to decrease. The in-

crease of our calculated springtime enrichment of Arctic

snow Br− is similar to observations showing a peak af-

ter polar sunrise (Macdonald et al., 2017; Spolaor et al.,

2013; Toom-Sauntry and Barrie, 2002). The recycling of de-

posited bromine was previously proposed in the context of

frost flower or snowpack activation followed by inland trans-

port over coastal regions (Domine et al., 2004; Piot and von

Glasow, 2008; Simpson et al., 2005, 2007b). We propose

that a similar mechanism takes place over sea ice and snow-

covered coastal regions with blowing-snow SSA, enabling

BrO explosions to propagate spatially and to last longer into

late spring. We also show that SSA deposition to surface

snow in winter and spring, when snow accumulation on sea

ice is at its minimum, could account for 0.01–0.03 psu on

MYI, 0.02–0.05 psu on FYI, and > 0.1 psu on sea ice areas

close to the open ocean. While upward migration of brine

from sea ice is the main source of salinity in surface snow

over FYI with shallow snowpack, atmospheric deposition

could thus be the dominant source in surface snow over the

less saline MYI sea ice and could play an important role in

late spring as the snowpack deepens over FYI (Domine et al.,

2004; Krnavek et al., 2012; Peterson et al., 2019).

Our simulations did not include two-way coupling be-

tween snowpack composition and atmospheric deposition,

did not consider blowing snow on coastal snow enriched in

Br−, and did not incorporate direct snowpack halogen acti-

vation. Incorporating these coupled processes together with

blowing-snow SSA promises to yield further insights into the

mechanisms leading to polar bromine activation and ODEs.

In addition, further examination of how horizontal resolu-

tion and turbulent mixing parameterizations influence sim-

ulations of ODEs would help improve our understanding of

the interplay between meteorology and chemistry in induc-

ing rapid variations in surface O3 over the Arctic.
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A., Bricaud, C., Carton, J., Fučkar, N., Garric, G., Iovino, D.,

Kauker, F., Korhonen, M., Lien, V. S., Marnela, M., Massonnet,

F., Mignac, D., Peterson, K. A., Sadikni, R., Shi, L., Tietsche, S.,

Toyoda, T., Xie, J., and Zhang, Z.: An assessment of ten ocean

reanalyses in the polar regions, Clim. Dynam., 52, 1613–1650,

https://doi.org/10.1007/s00382-018-4242-z, 2019.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T.

T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton,

D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global

fire emissions estimates during 1997–2016, Earth Syst. Sci. Data,

9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.

Wagner, T., Leue, C., Wenig, M., Pfeilsticker, K., and Platt,

U.: Spatial and temporal distribution of enhanced boundary

layer BrO concentrations measured by the GOME instrument

aboard ERS-2, J. Geophys. Res.-Atmos., 106, 24225–24235,

https://doi.org/10.1029/2000JD000201, 2001.

Wagner, T., Ibrahim, O., Sinreich, R., Frieß, U., von Glasow, R.,

and Platt, U.: Enhanced tropospheric BrO over Antarctic sea

ice in mid winter observed by MAX-DOAS on board the re-

search vessel Polarstern, Atmos. Chem. Phys., 7, 3129–3142,

https://doi.org/10.5194/acp-7-3129-2007, 2007.

Wang, S., McNamara, S. M., Moore, C. W., Obrist, D., Steffen, A.,

Shepson, P. B., Staebler, R. M., Raso, A. R. W., and Pratt, K. A.:

Direct detection of atmospheric atomic bromine leading to mer-

cury and ozone depletion, P. Natl. Acad. Sci. USA, 116, 14479–

14484, https://doi.org/10.1073/pnas.1900613116, 2019.

Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu,

L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee,

B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A.,

Huey, G. L., and Liao, H.: The role of chlorine in global

tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003,

https://doi.org/10.5194/acp-19-3981-2019, 2019.

Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov,

V. F., Bryazgin, N. N., Aleksandrov, Y. I., and

https://doi.org/10.5194/acp-20-7335-2020 Atmos. Chem. Phys., 20, 7335–7358, 2020



7358 J. Huang et al.: Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and O3

Colony, R.: Snow Depth on Arctic Sea Ice, J. Cli-

mate, 12, 1814–1829, https://doi.org/10.1175/1520-

0442(1999)012<1814:SDOASI>2.0.CO;2, 1999.

Wren, S. N., Donaldson, D. J., and Abbatt, J. P. D.: Photochemical

chlorine and bromine activation from artificial saline snow, At-

mos. Chem. Phys., 13, 9789–9800, https://doi.org/10.5194/acp-

13-9789-2013, 2013.

Yang, X., Pyle, J. A., and Cox, R. A.: Sea salt aerosol production

and bromine release: Role of snow on sea ice, Geophys. Res.

Lett., 35, L16815, https://doi.org/10.1029/2008GL034536, 2008.

Yang, X., Pyle, J. A., Cox, R. A., Theys, N., and Van Roozen-

dael, M.: Snow-sourced bromine and its implications for po-

lar tropospheric ozone, Atmos. Chem. Phys., 10, 7763–7773,

https://doi.org/10.5194/acp-10-7763-2010, 2010.
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