378 research outputs found

    A Tunable Echelle Imager

    Get PDF
    We describe and evaluate a new instrument design called a Tunable Echelle Imager (TEI). In this instrument, the output from an imaging Fabry-Perot interferometer is cross-dispersed by a grism in one direction and dispersed by an echelle grating in the perpendicular direction. This forms a mosaic of different narrow-band images of the same field on a detector. It offers a distinct wavelength multiplex advantage over a traditional imaging Fabry-Perot device. Potential applications of the TEI include spectrophotometric imaging and OH-suppressed imaging by rejection.Comment: 11 pages, 12 figures, accepted by PAS

    Circularly Symmetric Apodization via Starshaped Masks

    Full text link
    Recently, we introduced a class of shaped pupil masks, called spiderweb masks, that produce point spread functions having annular dark zones. With such masks, a single image can be used to probe a star for extrasolar planets. In this paper, we introduce a new class of shaped pupil masks that also provide annular dark zones. We call these masks starshaped masks. Given any circularly symmetric apodization function, we show how to construct a corresponding starshaped mask that has the same point-spread function (out to any given outer working distance) as obtained by the apodization.Comment: Paper also at: http://www.orfe.princeton.edu/~rvdb/tex/starshape/ms.pdf Updated to clarify misleading statements regarding total throughput for apodizations and their corresponding starshaped mask

    The Performance and Scientific Rationale for an IR Imaging Fourier Transform Spectrograph on a Large Space Telescope

    Get PDF
    We describe a concept for an imaging spectrograph for a large orbiting observatory such as NASA's proposed Next Generation Space Telescope (NGST) based on an imaging Fourier transform spectrograph (IFTS). An IFTS has several important advantages which make it an ideal instrument to pursue the scientific objectives of NGST. We review the operation of an IFTS and make a quantitative evaluation of the signal-to-noise performance of such an instrument in the context of NGST. We consider the relationship between pixel size, spectral resolution, and diameter of the beamsplitter for imaging and non-imaging Fourier transform spectrographs and give the condition required to maintain spectral modulation efficiency over the entire field of view. We give examples of scientific programs that could be performed with this facility.Comment: 20 pages, 7 Postscript figures. PASP in pres

    Theoretical Limits on Extrasolar Terrestrial Planet Detection with Coronagraphs

    Get PDF
    Many high contrast coronagraph designs have recently been proposed. In this paper, their suitability for direct imaging of extrasolar terrestrial planets is reviewed. We also develop a linear-algebra based model of coronagraphy that can both explain the behavior of existing coronagraphs and quantify the coronagraphic performance limit imposed by fundamental physics. We find that the maximum theoretical throughput of a coronagraph is equal to one minus the non-aberrated non-coronagraphic PSF of the telescope. We describe how a coronagraph reaching this fundamental limit may be designed, and how much improvement over the best existing coronagraph design is still possible. Both the analytical model and numerical simulations of existing designs also show that this theoretical limit rapidly degrades as the source size is increased: the ``highest performance'' coronagraphs, those with the highest throughput and smallest Inner Working Angle (IWA), are the most sensitive to stellar angular diameter. This unfortunately rules out the possibility of using a small IWA (lambda/d) coronagraph for a terrestrial planet imaging mission. Finally, a detailed numerical simulation which accurately accounts for stellar angular size, zodiacal and exozodiacal light is used to quantify the efficiency of coronagraph designs for direct imaging of extrasolar terrestrial planets in a possible real observing program. We find that in the photon noise limited regime, a 4m telescope with a theoretically optimal coronagraph is able to detect Earth-like planets around 50 stars with 1hr exposure time per target (assuming 25% throughput and exozodi levels similar to our solar system). We also show that at least 2 existing coronagraph design can approach this level of performance in the ideal monochromatic case considered in this study.Comment: Accepted for publication to ApJ Sup

    A Tunable Lyot Filter at Prime Focus: a Method for Tracing Supercluster Scales at z ~ 1

    Get PDF
    Tunable narrow-band, emission-line surveys have begun to show the ease with which star forming galaxies can be identified in restricted redshift intervals to z ~ 5 with a 4m class telescope. These surveys have been carried out with imaging systems at the Cassegrain or Nasmyth focus and are therefore restricted to fields smaller than 10 arcmin. We now show that tunable narrowband imaging is possible over a 30 arcmin field with a high-performance Lyot filter placed directly in front of a CCD mosaic at the prime focus. Our design is intended for the f/3.3 prime focus of the AAT 3.9m, although similar devices can be envisaged for the Subaru 8m (f/2), Palomar 5m (f/3.4), VISTA 4m (f/6), Mayall 4m (f/2.6) or CFHT 3.6m (f/4). A modified Wynne doublet ensures sub-arcsecond performance over the field. In combination with the new Wide-Field Imaging 8K x 8K mosaic (WFI) at the AAT, the overall throughput (35%) of the system to unpolarised light is expected to be comparable to the TAURUS Tunable Filter (TTF). Unlike the TTF, the field is fully monochromatic and the instrumental profile has much better wing suppression. For targetted surveys of emission-line sources at z ~ 1, a low-resolution (R ~ 150 at 550nm) Lyot filter on a 4m telescope is expected to be comparable or superior to current instruments on 8-10m class telescopes. We demonstrate that the 30 arcmin field is well matched to superclusters at these redshifts such that large-scale structure should be directly observable.Comment: Astrophysical Journal, accepted. 53 pages, 16 figures, aaste

    Methane detection scheme based upon the changing optical constants of a zinc oxide/platinum matrix created by a redox reaction and their effect upon surface plasmons

    Get PDF
    We detect changes in the optical properties of a metal oxide semiconductor (MOS), ZnO, in a multi-thin-film matrix with platinum in the presence of the hydrocarbon gas methane. A limit of detection of 2% by volume with concentrations from 0 to 10% and maximum resolution of 0.15% with concentrations ranging from 30% to 80% at room temperature are demonstrated along with a selective chemical response to methane over carbon dioxide and the other alkane gases. The device yields the equivalent maximum bulk refractive index spectral sensitivity of 1.8 × 105 nm/RIU. This is the first time that the optical properties of MOS have been monitored to detect the presence of a specific gas. This single observation is a significant result, as MOS have a potentially large number of target gases, thus offering a new paradigm for gas sensing using MOSs
    • 

    corecore