729 research outputs found
The Decline of the Rehabilitative Ideal: Penal Policy and Social Idea
In his most recent contribution Professor Francis Allen suggests that the rehabilitative ideal can flourish only in a particular kind of society. He observes that today\u27s American society lacks the nourishing characteristics that once fed that ideal; consequently, the ideal has withered. This argument is concisely and precisely constructed in The Decline of the Rehabilitative Ideal, a book derived from the 1979 Starrs Lectures on Jurisprudence at Yale Law School. Rather than describe the extent of the decline, Professor Allen focuses on the nexus raised in the book\u27s subtitle--penal policy and social purpose. As social purpose evolved (perhaps devolved is more accurate) in the United States, a parallel evolution away from the rehabilitative ideal occurred. In tracing that process, Professor Allen notes that the modern decline of penal rehabilitationism cannot be fully explained by the persuasiveness of the logical cases arrayed against it. He thoroughly analyzes those logical challenges and canvasses several potential routes to revitalizing the rehabilitative ideal. Throughout, the reasoning is clear, sources are abundant, and the insight offered is sharp. Consequently, one can commend the book as an enjoyable excursion into rehabilitation policy guided by a wise and knowledgeable writer. Beyond that analysis, however, the book suffers from Allen\u27s failure to emphasize that forces other than those that take the form of logical arguments about appropriate penal policies and societal meanderings also play a part in the decline of the rehabilitative ideal
Excess Spin and the Dynamics of Antiferromagnetic Ferritin
Temperature-dependent magnetization measurements on a series of synthetic
ferritin proteins containing from 100 to 3000 Fe(III) ions are used to
determine the uncompensated moment of these antiferromagnetic particles. The
results are compared with recent theories of macroscopic quantum coherence
which explicitly include the effect of this excess moment. The scaling of the
excess moment with protein size is consistent with a simple model of finite
size effects and sublattice noncompensation.Comment: 4 pages, 3 Postsript figures, 1 table. Submitted to PR
Sialylation of campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice
<p>Background:
Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.</p>
<p>Methodology/Principal Findings:
In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.</p>
<p>Conclusions/Significance:
These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS</p>
Microwave Spectroscopy of Thermally Excited Quasiparticles in YBa_2Cu_3O_{6.99}
We present here the microwave surface impedance of a high purity crystal of
measured at 5 frequencies between 1 and 75 GHz. This data
set reveals the main features of the conductivity spectrum of the thermally
excited quasiparticles in the superconducting state. Below 20 K there is a
regime of extremely long quasiparticle lifetimes, due to both the collapse of
inelastic scattering below and the very weak impurity scattering in the
high purity -grown crystal used in this study. Above 20 K, the
scattering increases dramatically, initially at least as fast as .Comment: 13 pages with 10 figures. submitted to Phys Rev
DNDI-6148:A novel benzoxaborole preclinical candidate for the treatment of visceral leishmaniasis
Visceral leishmaniasis (VL) is a parasitic disease endemic across multiple regions of the world and is fatal if untreated. Current therapies are unsuitable, and there is an urgent need for safe, short-course, and low-cost oral treatments to combat this neglected disease. The benzoxaborole chemotype has previously delivered clinical candidates for the treatment of other parasitic diseases. Here, we describe the development and optimization of this series, leading to the identification of compounds with potent in vitro and in vivo antileishmanial activity. The lead compound (DNDI-6148) combines impressive in vivo efficacy (>98% reduction in parasite burden) with pharmaceutical properties suitable for onward development and an acceptable safety profile. Detailed mode of action studies confirm that DNDI-6148 acts principally through the inhibition of Leishmania cleavage and polyadenylation specificity factor (CPSF3) endonuclease. As a result of these studies and its promising profile, DNDI-6148 has been declared a preclinical candidate for the treatment of VL
Nomenclature for Pediatric and Congenital Cardiac Care: Unification of Clinical and Administrative Nomenclature – The 2021 International Paediatric and Congenital Cardiac Code (IPCCC) and the Eleventh Revision of the International Classification of Diseases (ICD-11)
Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code ( IPCCC ) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases ( ICD-11 ). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC .
The International Society for Nomenclature of Paediatric and Congenital Heart Disease ( ISNPCHD ), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature . This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature.
The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC , as IPCCC continues to evolve
Classification of Ventricular Septal Defects for the Eleventh Iteration of the International Classification of Diseases—Striving for Consensus: A Report From the International Society for Nomenclature of Paediatric and Congenital Heart Disease
The definition and classification of ventricular septal defects have been fraught with controversy. The International Society for Nomenclature of Paediatric and Congenital Heart Disease is a group of international specialists in pediatric cardiology, cardiac surgery, cardiac morphology, and cardiac pathology that has met annually for the past 9 years in an effort to unify by consensus the divergent approaches to describe ventricular septal defects. These efforts have culminated in acceptance of the classification system by the World Health Organization into the 11th Iteration of the International Classification of Diseases. The scheme to categorize a ventricular septal defect uses both its location and the structures along its borders, thereby bridging the two most popular and disparate classification approaches and providing a common language for describing each phenotype. Although the first-order terms are based on the geographic categories of central perimembranous, inlet, trabecular muscular, and outlet defects, inlet and outlet defects are further characterized by descriptors that incorporate the borders of the defect, namely the perimembranous, muscular, and juxta-arterial types. The Society recognizes that it is equally valid to classify these defects by geography or borders, so the emphasis in this system is on the second-order terms that incorporate both geography and borders to describe each phenotype. The unified terminology should help the medical community describe with better precision all types of ventricular septal defects
A Novel Obligate Intracellular Gamma-Proteobacterium Associated with Ixodid Ticks, Diplorickettsia massiliensis, Gen. Nov., Sp. Nov
Background: Obligate intracellular bacteria of arthropods often exhibit a significant role in either human health or arthropod ecology. Methodology/Principal Findings: An obligate intracellular gamma-proteobacterium was isolated from the actively questing hard tick Ixodes ricinus using mammalian and amphibian cell lines. Transmission electron microscopy revealed a unique morphology of the bacterium, including intravacuolar localization of bacteria grouped predominantly in pairs and internal structures composed of electron-dense crystal-like structures and regular multilayer sheath-like structures. The isolate 20B was characterized to determine its taxonomic position using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that this strain belongs to the family Coxiellaceae, order Legionellales of Gamma-proteobacteria, and the closest relatives are different Rickettsiella spp. The level of 16S rRNA gene sequence similarity between strain 20B and other recognized species of the family was below 94.5%. Partial sequences of the rpoB, parC and ftsY genes confirmed the phylogenetic position of the new isolate. The G+C content estimated on the basis of whole genome analysis of strain 20B was 37.88%. On the basis of its phenotypic and genotypic properties, together with phylogenetic distinctiveness, we propose that strain 20B to be classified in the new genus Diplorickettsia as the type strain of a novel species named Diplorickettsia massiliensis sp. nov. Conclusions/Significance: Considering the source of its isolation (hard tick, often biting humans) the role of this bacterium in the pathology of humans, animals and ticks should be further investigated
- …