4,803 research outputs found
Unknown Unknowns or: How I Learned to Stop Worrying and Love the Balloon!
Produced in response to the Critical Kits symposium on 30th November 2016 which was organised by Redock, a community arts collective, at which creatives and makers dissected notions of critical kits with regard to their own practice. In this context ‘Critical Kits’ was used as a shorthand for all the issues around documenting participatory artistic practice that uses technology of various kinds, not just projects that use kits. Written in collaboration with Jonathan Spencer, and due for publication by Torque later in the year as part of the book Critical Kits which presents an edited series of critical reviews of design and artistic practice, the article reflects on our practice and experiences with the OLO project and the Gym Jams event, particularly with regard to integrating technologies into participatory events / artworks and cross disciplinary collaboration between designers, artists and makers. It examines and critiques our own relationship to the project, expectations versus reality, the ambition of the project, the processes involved and the intersection of art and public engagement. These findings can be used by practitioners to inform future works and collaborations as part of an iterative process
A duality-based optimisation approach for the reliable solution of (P, T) phase equilibrium in volume-composition space
Development of intermolecular potential models for electrolyte solutions using an electrolyte SAFT-VR Mie equation of state
We present a theoretical framework and parameterisation of intermolecular potentials for aqueous electrolyte solutions using the statistical associating fluid theory based on the Mie interaction potential (SAFT-VR Mie), coupled with the primitive, non-restricted mean-spherical approximation (MSA) for electrolytes. In common with other SAFT approaches, water is modelled as a spherical molecule with four off-centre association sites to represent the hydrogen-bonding interactions; the repulsive and dispersive interactions between the molecular cores are represented with a potential of the Mie (generalised Lennard-Jones) form. The ionic species are modelled as fully dissociated, and each ion is treated as spherical: Coulombic ion–ion interactions are included at the centre of a Mie core; the ion–water interactions are also modelled with a Mie potential without an explicit treatment of ion–dipole interaction. A Born contribution to the Helmholtz free energy of the system is included to account for the process of charging the ions in the aqueous dielectric medium. The parameterisation of the ion potential models is simplified by representing the ion–ion dispersive interaction energies with a modified version of the London theory for the unlike attractions. By combining the Shannon estimates of the size of the ionic species with the Born cavity size reported by Rashin and Honig, the parameterisation of the model is reduced to the determination of a single ion–solvent attractive interaction parameter. The resulting SAFT-VRE Mie parameter sets allow one to accurately reproduce the densities, vapour pressures, and osmotic coefficients for a broad variety of aqueous electrolyte solutions; the activity coefficients of the ions, which are not used in the parameterisation of the models, are also found to be in good agreement with the experimental data. The models are shown to be reliable beyond the molality range considered during parameter estimation. The inclusion of the Born free-energy contribution, together with appropriate estimates for the size of the ionic cavity, allows for accurate predictions of the Gibbs free energy of solvation of the ionic species considered. The solubility limits are also predicted for a number of salts; in cases where reliable reference data are available the predictions are in good agreement with experiment
Integrated solvent and process design using a SAFT-VR thermodynamic description: High-pressure separation of carbon dioxide and methane
Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments
A generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al., J. Chem. Phys. 139, 154504 (2013)] is formulated within the framework of a group contribution approach (SAFT-γ Mie). Molecules are represented as comprising distinct functional (chemical) groups based on a fused heteronuclear molecular model, where the interactions between segments are described with the Mie (generalized Lennard-Jonesium) potential of variable attractive and repulsive range. A key feature of the new theory is the accurate description of the monomeric group-group interactions by application of a high-temperature perturbation expansion up to third order. The capabilities of the SAFT-γ Mie approach are exemplified by studying the thermodynamic properties of two chemical families, the n-alkanes and the n-alkyl esters, by developing parameters for the methyl, methylene, and carboxylate functional groups (CH3, CH2, and COO). The approach is shown to describe accurately the fluid-phase behavior of the compounds considered with absolute average deviations of 1.20% and 0.42% for the vapor pressure and saturated liquid density, respectively, which represents a clear improvement over other existing SAFT-based group contribution approaches. The use of Mie potentials to describe the group-group interaction is shown to allow accurate simultaneous descriptions of the fluid-phase behavior and second-order thermodynamic derivative properties of the pure fluids based on a single set of group parameters. Furthermore, the application of the perturbation expansion to third order for the description of the reference monomeric fluid improves the predictions of the theory for the fluid-phase behavior of pure components in the near-critical region. The predictive capabilities of the approach stem from its formulation within a group-contribution formalism: predictions of the fluid-phase behavior and thermodynamic derivative properties of compounds not included in the development of group parameters are demonstrated. The performance of the theory is also critically assessed with predictions of the fluid-phase behavior (vapor-liquid and liquid-liquid equilibria) and excess thermodynamic properties of a variety of binary mixtures, including polymer solutions, where very good agreement with the experimental data is seen, without the need for adjustable mixture parameters
Modelling the fluid phase behaviour of aqueous mixtures of multifunctional alkanolamines and carbon dioxide using transferable parameters with the SAFT-VR approach
SAFT-gamma Force Field for the Simulation of Molecular Fluids. 1. A Single-Site Coarse Grained Model of Carbon Dioxide
An application of the "top-down" concept for the development of accurate coarse-grained intermolecular potentials of complex fluids is presented. With the more common "bottom-up" procedure, coarse-grained models are constructed from a suitable simplification of a detailed atomistic representation, and small adjustments to the intermolecular parameters are made by comparison with limited experimental data where necessary. In contrast, in the top-down approach, a molecular-based equation of state is used to obtain an effective coarse-grained intermolecular potential that reproduces the macroscopic experimental thermophysical properties over a wide range of conditions. These coarse-grained intermolecular potentials can then be used in conventional molecular simulation to obtain properties (such as structure or dynamics) that are not directly accessible from the equation of state or at extreme conditions where the theory is expected to fail. To demonstrate our procedure, a coarse-grained model for carbon dioxide (CO2) is obtained from a recent implementation of the statistical associating fluid theory of variable range (SAFT-VR) employing a Mie (generalized Lennard-Jones) potential; the parameters of this single-site Mie model of CO2 are estimated by optimizing the equation of state's description of the experimental vapor-pressure and saturated liquid density data. This approach is only viable because of the excellent agreement of the SAFT-VR Mie EoS with simulation data. Our single-site SAFT-γ coarse-grained model for CO2 is used in Monte Carlo molecular simulation to assess the adequacy of the description of the fluid-phase behavior and properties that were not used to develop the potential model such as the enthalpy of vaporization, interfacial tension, density profiles, supercritical densities, and second-derivative thermodynamic properties (thermal expansivity, isothermal compressibility, heat capacity, Joule-Thompson coefficient, and speed of sound). The accuracy of the description with the single-site SAFT-γ model of CO2 is found to be of similar quality to that of more sophisticated intermolecular potentials such as a six-site (three LJ centers and three charged sites) all-atom model. The SAFT-γ top-down approach to coarse-graining resolves a key challenge with coarse-graining techniques: the provision of a direct robust link between the microscopic and macroscopic scales. © 2011 American Chemical Society
Concurrent adaptation to opposing visual displacements during an alternating movement.
It has been suggested that, during tasks in which subjects are exposed to a visual rotation of cursor feedback, alternating bimanual adaptation to opposing rotations is as rapid as unimanual adaptation to a single rotation (Bock et al. in Exp Brain Res 162:513–519, 2005). However, that experiment did not test strict alternation of the limbs but short alternate blocks of trials. We have therefore tested adaptation under alternate left/right hand movement with opposing rotations. It was clear that the left and right hand, within the alternating conditions, learnt to adapt to the opposing displacements at a similar rate suggesting that two adaptive states were formed concurrently. We suggest that the separate limbs are used as contextual cues to switch between the relevant adaptive states. However, we found that during online correction the alternating conditions had a significantly slower rate of adaptation in comparison to the unimanual conditions. Control conditions indicate that the results are not directly due the alternation between limbs or to the constant switching of vision between the two eyes. The negative interference may originate from the requirement to dissociate the visual information of these two alternating displacements to allow online control of the two arms
Spatial and topological organization of DNA chains induced by gene co-localization
Transcriptional activity has been shown to relate to the organization of
chromosomes in the eukaryotic nucleus and in the bacterial nucleoid. In
particular, highly transcribed genes, RNA polymerases and transcription factors
gather into discrete spatial foci called transcription factories. However, the
mechanisms underlying the formation of these foci and the resulting topological
order of the chromosome remain to be elucidated. Here we consider a
thermodynamic framework based on a worm-like chain model of chromosomes where
sparse designated sites along the DNA are able to interact whenever they are
spatially close-by. This is motivated by recurrent evidence that there exists
physical interactions between genes that operate together. Three important
results come out of this simple framework. First, the resulting formation of
transcription foci can be viewed as a micro-phase separation of the interacting
sites from the rest of the DNA. In this respect, a thermodynamic analysis
suggests transcription factors to be appropriate candidates for mediating the
physical interactions between genes. Next, numerical simulations of the polymer
reveal a rich variety of phases that are associated with different topological
orderings, each providing a way to increase the local concentrations of the
interacting sites. Finally, the numerical results show that both
one-dimensional clustering and periodic location of the binding sites along the
DNA, which have been observed in several organisms, make the spatial
co-localization of multiple families of genes particularly efficient.Comment: Figures and Supplementary Material freely available on
http://dx.doi.org/10.1371/journal.pcbi.100067
Comparative Assessment of Climate Change Scenarios Based on Aquatic Food Web Modeling
In the years 2004 and 2005, we collected samples of phytoplankton, zooplankton, and macroinvertebrates in an artificial small pond in Budapest (Hungary). We set up a simulation model predicting the abundances of the cyclopoids, Eudiaptomus zachariasi, and Ischnura pumilio by considering only temperature and the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature but the abundances of the three mentioned groups. When we ran the model with the data series of internationally accepted climate change scenarios, the different outcomes were discussed. Comparative assessment of the alternative climate change scenarios was also carried out with statistical methods
- …
