
A duality-based optimisation approach for the reliable solution of (P,T )

phase equilibrium in volume-composition space.

Frances E. Pereira, George Jackson, Amparo Galindo, Claire S. Adjiman∗

Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London, SW7 2AZ, United
Kingdom

Abstract

A reliable algorithm for the solution of fluid phase equilibrium at constant pressure and temperature (P,T

flash) is presented. The approach is applicable to multi-component mixtures described with general equa-

tions of state and is based on a formulation of P,T phase equilibrium as a dual optimisation problem in

volume-composition space, translated away from the Gibbs free energy to the Helmholtz free energy. This

formulation facilitates the use of guaranteed solution algorithms, particularly in the case of sophisticated

equations of state (EOS) such as SAFT (statistical associating fluid theory), because such representations

are higher-than-cubic functions in volume and are formulated in the Helmholtz free energy. With the pro-

posed algorithm (which is based on a combination of local and global optimisation, where the number of

subproblems to be solved globally is kept at a minimum) one is guaranteed to identify the number of stable

phases present at equilibrium, along with their properties, without any need for initial guesses, or indeed

any a priori knowledge about the behaviour of the system. The method is applicable to the calculation

of any kind of fluid phase behaviour (e.g., vapour-liquid (VLE), liquid-liquid (LLE), vapour-liquid-liquid

(VLLE), etc.). Several algorithmic options are investigated and their computational performance compared.

A prototype implementation is used to determine the fluid phase equilibria of a number of binary and ternary

systems, where the thermodynamic properties are calculated through a molecular-based EOS. Examples are

shown for the VLE and VLLE for mixtures modelled with an augmented van der Waals EOS, a non-cubic

EOS that incorporates the Carnahan and Starling representation of the repulsive interactions. Further ex-

amples are presented for VLE and VLLE in polymer systems, modelled with an EOS of the generic SAFT

form. Fluid phase equilibrium calculations for polymer systems are notoriously difficult, and convergence

problems are often encountered, even with good initial guesses. The proposed method is found to be reliable

in all cases examined.

Keywords: phase equilibrium; phase stability; Helmholtz free energy; global optimisation; equations of

state; augmented van der Waals equation; statistical associating fluid theory (SAFT)

1. Introduction

The reliable determination of phase equilibrium is important in process and product design, as the appear-

ance and disappearance of phases, and the composition of the stable phases, greatly affect process perfor-
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mance and product end-use properties. The phases at equilibrium depend on key design variables such as

total composition, temperature and pressure. Within process modelling, the solution of phase equilibrium

is the task to which the majority of CPU time is devoted. Even for binary mixtures, this problem can be

challenging [1–3], due to the high degree of nonlinearity and the presence of discontinuities.

In many applications, the phase equilibrium problem at given pressure, temperature and total composition,

the P-T flash, is of interest. This problem can be briefly described as follows: Given a multicomponent

mixture with specified total composition, pressure and temperature, how many stable equilibrium phases

are present and what are their properties? The solution of phase equilibrium lies at the global minimum of

the total system Gibbs free energy [4]. This function is related to the intensive Gibbs free energy which

has the natural variables x, P ,T , where x is a vector of component mole fractions, P is pressure and T

is temperature. One particularly challenging aspect of the formulation is that the number of phases is

unknown [5].

There is a large body of work on this subject, the most successful general concept to date being the al-

ternating stability test / flash approach first introduced by Michelsen [6–8]. The development of reliable

methods for the solution of phase equilibrium and stability remains an active area of research. A number

of deterministic techniques have been proposed, in which analysis of or insight into the problem is used to

increase the likelihood of finding the stable solution (e.g., [9–15]). A global analysis of the solution space

is undertaken in several of these algorithms, e.g., ([11, 15]), but without a formal guarantee of convergence.

Such approaches are particularly valuable where computational speed is a prime consideration. The correct

solution is identified in many cases, but not in some difficult instances as discussed in [16–20]. Several

guaranteed deterministic techniques have also been developed, such as those discussed in [21–27], for

which the focus is placed on providing a mathematical guarantee of finite convergence to within a tolerance

ε of the solution. Through the use of interval analysis, it is possible to extend the guarantee of correctness

so that mathematical and computational convergence can be ensured, regardless of the round-off error, as

shown in [18, 28–31]. Finally, a number of stochastic algorithms have been developed that provide an in-

finite time guarantee of convergence [32–34]. Further references can be found in the reviews by Wakeham

and Stateva [35] and by Segura et al. [36].

The use of guaranteed deterministic techniques comes at a computational cost, but they are particularly

useful in difficult cases, or in cases where there are no external means of checking correctness, such as

in parameter estimation [1]. In order to increase computational performance, a combination of local and

global solvers is used to solve nonconvex subproblems in several guaranteed deterministic techniques, e.g.,

see [18, 24, 30]. The objective is to develop an algorithm for the solution of phase equilibrium, hereafter

referred to as the PE algorithm, that guarantees convergence to the correct solution in finite time. The

nonconvex subproblems are the tangent plane stability problem and the flash (or phase split) problem for

a fixed number of phases. To guarantee that the correct solution of phase equilibrium has been found, it

is necessary to use a deterministic global optimisation algorithm at least once during the PE algorithm, to

solve the tangent plane stability test: if the proposed solution is found to be stable through this global test,

the problem is solved and the PE algorithm can terminate. If it is found not to be stable, a flash problem must

be solved for a fixed number of phases to generate a new solution, and a stability problem must eventually
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be solved to global optimality for a new potential phase configuration. The use of global optimisation for

phase stability guarantees that when a final solution is reported by the PE algorithm, it is stable, i.e., the

PE algorithm cannot converge to a wrong solution. This is not enough, however, to guarantee that the PE

algorithm will find the stable solution in finite time. For this, one must be able to guarantee that, for a given

number of phases, the solution with the lowest Gibbs free energy is found. A local phase split algorithm

is highly dependent on starting points and could converge repeatedly to a metastable solution, for example.

In practice, this behaviour is often avoided by generating good initial points. Nevertheless, the only way to

offer a theoretical guarantee of finite-time convergence is to ensure that global optimisation can be used to

solve the flash problem; such an approach is implemented in GLOPEQ [24].

In the present work, we focus on the development of a guaranteed deterministic framework that can be

applied to any equation of state (EOS), including those that are higher-than-cubic in volume such as the sta-

tistical associating fluid theory (SAFT) [37, 38]. Higher-than-cubic EOSs are becoming increasingly pop-

ular due to their predictive capabilities for complex fluids, such as associating (i.e., hydrogen bonding) and

polymer mixtures. When dealing with such approaches, which are typically formulated in the Helmholtz

free energy A(x,V,T ), where V is volume, the guaranteed solution of phase equilibrium is subject to ad-

ditional difficulties. The Helmholtz free energy is the natural thermodynamic potential for developments

within a statistical mechanical framework and has x ,V , T as natural variables, as opposed to x, P, T for the

Gibbs free energy. If the EOS is first-order in volume, then moving between the Helmholtz and Gibbs free

energies is a trivial exercise. Unfortunately, this is only the case for the ideal gas EOS. For other EOSs, the

evaluation of constant pressure properties requires a minimisation of the Gibbs free energy with respect to

volume, with a constraint relating the volume to the pressure. This minimisation is often realised through

the identification of all the volume roots of the EOS, and then the selection of the physically meaningful

root (i.e., the most stable root, with the lowest Gibbs free energy). In the case of cubic equations of state,

the volume roots of the EOS may be obtained analytically. For higher-than-cubic equations, calculations at

a specified pressure and temperature are more time consuming, since the determination of G(x,P,T ) at each

point in composition requires the use of a nonlinear solver that can reliably identify the appropriate volume

root for use in the calculation. In addition to increasing the cost of each Gibbs free energy evaluation, this

inner minimisation can lead to complications when developing deterministic guaranteed approaches to fluid

phase equilibrium. For instance, Xu et al. [30] have shown that the presence of an inner iteration can lead

to large increases in the computational cost with a guaranteed deterministic algorithm. Though in the case

of [30] the inner iteration is the system of equations arising from the association term of the SAFT approach

[37, 38], the solution of the pressure equation is also likely to lead to increases in computational cost: it is a

low-dimensional but highly nonlinear problem. A promising avenue in this context is the formulation pro-

posed by Nagarajan et al. [39, 40], who developed a stability test and flash calculation method based on the

Michelsen methodology, but using component molar densities as independent variables. This circumvents

the need to solve for the volume roots of higher-than-cubic EOSs. It can also lead to enhanced robustness

[19]. This formulation has been used successfully in an interval-based global optimisation algorithm to

solve multicomponent phase equilibria with a version of SAFT [30] and in a stochastic global optimisation

algorithm [41].
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Mitsos and Barton [27] have recently proposed an alternative approach to identifying a stable phase. They

showed that the solutions of a dual formulation stemming from a single-phase Gibbs free energy minimisa-

tion problem, where mass balance constraints are imposed, are stable equilibrium phases. This is an elegant

new approach to the phase equilibrium problem, which requires no prior knowledge of the system being

examined, neither in terms of the number of equilibrium phases present, nor in terms of the equilibrium

phase compositions. At the solution of the dual problem, the composition of one of the stable equilibrium

phases is obtained, as well as the equilibrium chemical potentials of all components. This information

completely describes the common tangent plane connecting the equilibrium phases, and therefore may be

used to find all other stable phases, which are in fact all the other (global) solutions of the dual problem.

The dual approach has been applied to several case studies using the NRTL and UNIQUAC models and has

been used in parameter estimation for a number of thermodynamic models [42, 43]. Although the presence

of a vapour phase is considered in [43], it is treated as ideal. In the solution algorithm proposed in [27] for

the dual problem, one iterates between solving linear and nonconvex optimisation problems. The noncon-

vex problem has the same dimensionality as the tangent plane distance minimisation problem and a similar

functional form. A feature of the dual approach is that it is not necessary to minimise the Gibbs free energy

for different guesses of the number of phases. This approach has the potential to reduce the computational

time required to solve the phase equilibrium problem provided that the number of iterations between the

nonconvex and linear problems can be kept relatively low, and that, once a stable phase has been found,

the remaining phases can be identified at low cost. This warrants further investigation and development

for the case of general equations of state, particularly in the context of algorithms that identify all stable

equilibrium phases.

In this paper, we develop a dual-based formulation of P,T phase equilibrium based on the Helmholtz free

energy and a guaranteed deterministic algorithm for its solution. The approach is general for any equation

of state and any number of components. Instead of component molar densities [39], mole fractions and total

molar volume (or total molar density) are used as independent variables. The proposed algorithm is based

on a combination of local and global solvers for the nonconvex subproblems, and guarantees that all stable

phases can be found in finite time within a specified tolerance ε . It is particularly well-suited to higher-than-

cubic equations of state formulated in the Helmholtz free energy, such as SAFT [37, 38], because it does

not require the explicit identification of volume roots in the calculation of the system properties at specified

T and P. We focus on such EOSs in the application of the approach, and consider several challenging non-

associating mixtures of two or three components as a means to demonstrate the basic ideas. The extension

to associating systems is briefly mentioned in the conclusions.

In the next section, we introduce the concepts from thermodynamics and duality theory necessary to de-

scribe the approach, as well as the relevant notation. We review the framework of Mitsos and Barton [27],

which is based on the dual of a Gibbs free energy minimisation problem. In Section 3, we reformulate the

dual problem by expressing the Gibbs free energy in terms of the Helmholtz free energy, introducing the

volume as an independent variable. The global solutions of this formulation are shown to be equivalent to

those of [27], i.e., the global solutions characterise the stable phases present at equilibrium. In Section 4, we

propose a deterministic algorithm for the guaranteed identification of all stable phases that makes minimal
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use of the more computationally expensive global optimisation solvers. In Section 5, we describe our proto-

type implementation and present computational results with two EOSs that are higher than cubic functions

of volume: an AVDW (augmented van der Waals) and the SAFT-HS (statistical associating fluid theory

for a hard sphere reference) EOS. We examine the phase behaviour of a number of binary and ternary sys-

tems, and show the effectiveness of the proposed approach in dealing with numerically challenging phase

behaviour, such as that exhibited by highly asymmetric polymer-solvent systems. We use the examples to

study the efficiency of the proposed algorithm, relative to an algorithm based solely on global optimisation

for the nonconvex subproblems.

2. Background: phase stability and duality

We first review the underlying concepts necessary for the development of a formulation of the phase equi-

librium problem in the composition-volume space.

2.1. Formulation of the phase equilibrium problem at constant temperature and pressure

This analysis is based on a system at constant temperature (T 0), pressure (P0) and total mole numbers over

all components (n0). Given these specifications, the most stable state of the system may be either one or

multiple phases. The necessary and sufficient conditions for this most stable state are that it corresponds to

the global minimum in the total Gibbs free energy function, GT , over all phases, at the specified temperature

(T 0) and pressure (P0), subject to the conservation of mass. The total Gibbs free energy is defined as:

GT (n,P0,T 0) =
np

∑
j=1

nc

∑
i=1

ni, jμi, j(n j,P
0,T 0), (1)

where np is the number of phases present, nc is the number of components, n is a matrix representing the

number of moles of each component in each phase (i.e., ni, j is the number of moles of component i in phase

j), n j is the composition vector for phase j, μi, j(n j,P
0,T 0) is the chemical potential of component i in

phase j at the specified pressure and temperature (P0,T 0) and composition of phase j. The mole numbers

for each component must be such that,

np

∑
j=1

ni, j = n0
i , i = 1, . . . ,nc. (2)

The stable phase configuration may be found by global solution of the optimisation problem:

min
n,np

GT (n,P0,T 0)

s.t.
np

∑
j=1

ni, j −n0
i = 0, i = 1, . . . ,nc.

(3)

This optimisation problem is in a non-standard form in that the number of phases np, and hence the dimen-

sionality of the matrix n, are unknown.

It is useful to define the intensive Gibbs free energy, G(x̂ j,P,T ), where x̂ j denotes the vector of mole

fractions in phase j:

G(x̂ j,P,T ) =
nc

∑
i=1

x̂i, jμi(x̂ j,P,T ). (4)
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Following Mitsos and Barton [27], we choose to work in mole fraction rather than mole number. It is also

possible to develop the approach in the full space of nc components, by working with mole numbers. In

the remainder of this article, we eliminate the mole fraction of component nc from vector x̂ j, by using the

mass balance constraint in problem (3). We reformulate all functions in terms of the reduced variable vector

x j = (x j,1, . . . ,x j,nc−1)T , so that eqn. (4) becomes

G(x j,P,T ) =

(
nc−1

∑
i=1

x j,iμi(x j,P,T )

)
+

(
1−

nc−1

∑
i

x j,i

)
μnc(x j,P,T ). (5)

The intensive and total Gibbs free energies are related by

GT (n,P0,T 0) =
np

∑
j=1

nT jG(x j,P
0,T 0), (6)

where nT j is the number of moles in phase j.

The solution of the phase equilibrium problem (3) satisfies the necessary equilibrium conditions of equal-

ity of pressure and temperature over all phases, since the minimisation is carried out at constant T and P.

The condition of equality of component chemical potentials over all phases is enforced as a result of the

first-order optimality conditions. The Gibbs tangent plane criterion [44] states that the compositions corre-

sponding to coexisting equilibrium phases (however many phases this may be) lie on a line that is tangent to

the G(x,P0,T 0) surface at each equilibrium phase composition. In addition, it states that the tangent plane

running through the most stable equilibrium phase configuration (the global minimum in GT ) must remain

below the G(x,P0,T 0) surface throughout the whole composition space. Thus, this plane is a supporting

hyperplane of G(x,P0,T 0) in the composition space and it is tangent to G(x,P0,T 0) at the compositions

of all of the stable phases. The gradient of the tangent plane to the G(x,P0,T 0) surface for a phase j, at

composition x j, yields the vector of component chemical potentials in that phase [45]:

μi, j(x j,P
0,T 0)−μnc, j(x j,P

0,T 0) =
(∂G(x j,P

0,T 0)
∂xi, j

)
xk, j;k=1,...,nc−1,k �=i,P,T

i = 1, . . . ,nc−1; j = 1, . . . ,np. (7)

Since all stable phases lie on this common tangent, there must be equality of chemical potential between

phases. When np is not known a priori, phase equilibrium (problem (3) or an equivalent formulation) is usu-

ally solved iteratively following the general scheme of Michelsen [6, 7], by alternating between a stability

test and the solution of the phase equilibrium for a fixed number of phases. This results in a series of opti-

misations in nc−1 (or nc) variables for phase stability and np×nc variables for phase equilibrium (where

np varies from iteration to iteration). The dimensionality of the latter problem can be reduced by eliminat-

ing one phase or one component from the formulation using the material balance constraint. Clearly, the

computational effort required to solve the phase equilibrium problem for a fixed number of phases increases

with the number of phases and components. This has an impact on computational performance especially

for guaranteed deterministic algorithms. In this case, the nonconvex phase stability problem must be solved

to global optimality at least once to prove the stable phases have been found. In addition, the phase equilib-

rium may need to be solved to global optimality to offer a guarantee of convergence to the global solution:
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for a given number of phases, it may not be possible with a local solver to identify a phase split with a lower

Gibbs free energy than the current (not stable) minimum. In this case, it is necessary to use a global solver

to determine whether (i) a better solution exists, or (ii) the specified number of phases is not stable.

2.2. Basic concepts of duality theory

The main concepts of duality theory needed for the development of the problem formulation are explained

in this section. An excellent introduction to duality theory is given in [46]. We consider a minimisation

problem with a nonlinear objective function and linear equality constraints, as the phase equilibrium prob-

lem fits within this class:

min
x∈X

f (x)

s.t. hi(x) = 0 i = 1, ...,m

x ∈ X ∈ R
n

(8)

where f (x) is the objective function to be minimised, x is the n-dimensional vector of optimisation variables,

hi(x) is the ith equality constraint, m is the number of equality constraints (n ≥ m), and X is a closed set.

We assume that the set H = {x : h(x) = 0,x ∈ X} is non-empty, i.e., that there exists a feasible solution to

problem (8). In the context of duality theory, this problem is the primal problem and its Lagrangian dual

problem can be expressed as 1 [46]:

sup
λ

θ(λ ) (9)

where:

θ(λ ) = inf
x∈X

L(λ ,x) (10)

= inf
x∈X

[ f (x)+λ T h(x)], (11)

where λ is the vector of Lagrange multipliers associated with the constraint vector h(x) = 0 and L(x,λ ) is

the Lagrangian dual function. The dual formulation consists of an inner minimisation with respect to x and

an outer maximisation with respect to λ .

The dual problem may be interpreted geometrically by considering the Lagrangian function for a problem

with only one constraint, h(x) = 0, and hence a single multiplier λ :

L(x,λ ) = f (x)+λh(x). (12)

Let us define a plane y-z in which h(x) is plotted on the y-axis and f (x) on the z-axis, as shown in

figure 1, where the set G represents all combinations of values of the objective function and the con-

straint (h(x), f (x)) for x ∈ X . Thus, G is the image of X under the (h, f ) map and is given by G =

{(y,z) : y = h(x),z = f (x),x ∈ X}.

The intersection of the z-axis with G gives the set of values of f (x) for all feasible values of x, i.e., for all

x ∈ X such that y = h(x) = 0. At the solution of the primal problem, the equality constraint must be satisfied,

1The supremum of a set S (sup(S)) is defined as its least upper bound and the infimum (inf(S)) as its greatest lower bound; see for

example, [47].
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which implies the solution lies on the z-axis. Since f (x) must reach its minimum value at the solution of

the primal problem, the solution must also lie on the lower boundary of set G . Thus, the solution of the

primal problem is the point at which the lower boundary of G intersects the z-axis. This point is labelled

f P in figure 1.

To interpret the dual formulation and its link to the primal problem, we first consider given values of x(1) ∈X

and λ (1) and the line defined by:

z = L(x(1),λ (1))−λ (1)y, (13)

which has slope −λ (1) and intersects the z-axis at L(x(1),λ (1)). Since x(1) has been chosen within the

set X , it can be seen from eqns. (12) and (13) that line (13) and the set G share at least one point, (y,z) =

(h(x(1)), f (x(1))). By changing the value of x while keeping λ (1) constant, line (13) may be moved in the y-z

plane to change its intercept while maintaining a constant slope, as shown in figure 1. Based on eqn. (10), to

evaluate θ(λ (1)), L(x,λ (1)) must be minimised with respect to x over X . This is equivalent to finding a value

of x, x∗, that gives the minimum intercept of line (13) with the z-axis, θ(λ (1)) = L(x∗,θ (1)). By definition,

this line must maintain contact with the set G , and therefore must be a supporting tangent to G . Solving the

dual problem (9) is then equivalent to finding the value of λ such that the intercept θ(λ ) of the supporting

tangent with the z-axis is maximal. This tangent is shown as a dashed line in figure 1 and the solution of the

dual problem is denoted by θ D. In cases where the set G is convex, the solution of the dual problem, θ D, is

equal to that of the primal problem, f P. When G is nonconvex, however, there may be a difference between

the two values, as shown in figure 1. This is referred to as the duality gap. By construction, the solutions of

the primal and dual problems are always such that f P ≥ θ D. In a multidimensional problem, the solution

of the dual problem is a supporting hyperplane of the set G over X [46].

An important property of the dual function in (9) is that it is concave in λ , so that the local maximisation

of θ(λ ) yields the global optimum solution. The practical solution of the dual formulation is however

complicated by the need to perform an inner minimisation with respect to x for each evaluation of θ(λ ). If

the objective function f (x) is nonconvex and/or the equality constraints h(x) are nonlinear, then the inner

minimisation may have local as well as global solutions.

2.3. Phase stability as a dual problem

Phase stability may be posed as a constrained optimisation problem and the resulting link between phase

stability and Lagrange multiplers, in various thermodynamic spaces, is well-recognised [48]. In this context,

it is interesting to note that Mcdonald and Floudas [21, 22, 49] use relaxed Lagrangian dual problems to

determine phase stability in a guaranteed manner for the NRTL and UNIQUAC models. Mitsos and Barton

[27] have shown that one of the stable phases of a mixture at given total composition, temperature and

pressure can be determined by solving a Lagrangian dual optimisation problem to global optimality. This

is closely related to the minimisation of the tangent plane distance. Furthermore, they have shown that the

solution of the dual problem in fact characterises all the stable phases at the given conditions. This dual

formulation is described here.
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2.3.1. Formulation of the dual problem

The derivation of the dual formulation starts by defining an optimisation problem, or primal problem, that

is related to the phase equilibrium problem:

min
x

G(x,P0,T 0)

s.t. x0
i − xi = 0 i = 1, ...,nc−1

x ∈ X ⊂ R
nc−1

(Px)

The set X is given by {x : x ∈ [0,1]nc−1}. It is assumed that G is a continuous, but not necessarily differen-

tiable, function of x, that more than one component is present (nc > 1), and that the overall composition is

such that x0
i > 0 for all i = 1, . . . ,nc−1.

The solution of the primal problem (Px) is much simpler than the phase equilibrium problem (3). In prob-

lem (3), the Gibbs free energy is calculated over all (i.e., potentially multiple) phases. By contrast, the

primal objective function here is the Gibbs free energy of the system in a single phase state and, given the

mass balance constraint, the solution of the primal is trivially equal to the total composition. The optimal

objective function value is GP = G(x0,P0,T 0). The solution of the primal problem corresponds simply to

an evaluation of the G(x,P0,T 0) function at the overall composition x0.

A dual problem (Dx) corresponding to this primal problem is given by: 2

GD = max
λ∈Rnc−1

θ(λ )

s.t. θ(λ ) = min
x∈X

L(x,λ ),
(Dx)

where L(x,λ ) is the Lagrangian of (Px):

L(x,λ ) = G(x,P0,T 0)+
nc−1

∑
i=1

λi(x0
i − xi), (14)

λi is the Lagrange multiplier for the equality constraint on the mole fraction of component i in problem

(Px), and θ(λ ) is the dual function.

2.3.2. Equivalence between the dual problem and phase stability

In this section, some of the key ideas behind the dual problem formulation are discussed; the reader is

referred to [27] for a more detailed treatment. In particular, an exhaustive proof that the global solutions of

problem (Dx) correspond to stable equilibrium phases is given in [27].

Firstly, we should recall the meaning of ‘phase stability’ in the (N,P,T ) ensemble. A phase (or a config-

uration of multiple phases, e.g., two liquid phases and one vapour phase, in equilibrium) is stable if and

only if the system is in a configuration that minimises its total Gibbs free energy, as given by eqn. (6).

The exact nature of the most stable configuration of a system depends on the convexity of the G(x,P0,T 0)

surface. The convex hull (or convex envelope) of a function f (x) may be defined as the function that is

the tightest convex underestimator of f (x) (e.g. [46, 50]). The most stable phase configuration of a system

2max and min, rather than sup and inf are used in this definition of the dual problem. The reader is referred to propositions 13 and

16 of [27] for proofs that a maximum of Dx and a minimum of the inner problem are attained, when subject to suitable assumptions.
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lies on the convex hull of the G(x,P0,T 0) surface. The convex hull of G(x,P0,T 0) is a combination of

the function itself and supporting hyperplane(s), tangential to G(x,P0,T 0) at the compositions of the stable

phases. Thus, if the total (or feed) composition x0 of the mixture lies in a region where G(x,P0,T 0) and its

convex hull are equal, the phase with composition x0 is stable. If x0 lies in a region where the convex hull

strictly underestimates the G(x,P0,T 0) function, the phase with composition x0 is unstable or metastable

and there is a phase split. When the G(x,P0,T 0) surface is convex over the whole composition range, the

system remains in a single phase, whatever its composition. A graphical representation of G(x,P0,T 0) and

its convex hull is presented in figure 2. Solving the phase equilibrium problem involves identifying the

convex hull of the G(x,P0,T 0) function at x0.

Comparing the convex hull of the G(x,P0,T 0) surface and the surface itself is another way of stating the

tangent plane criterion [44], which can be used to determine whether, at constant temperature T 0 and

pressure P0 a phase at a given composition x0 is stable. The criterion requires that if the tangent to the

G(x,P0,T 0) surface, taken at x0 lies below the G(x,P0,T 0) surface at all compositions, then the state with

composition x0 is a stable phase. This is equivalent to determining whether G(x0,P0,T 0) lies on the convex

hull of G(x,P0,T 0). Furthermore, at a multiphase stable equilibrium state, the chemical potential of each

component must be the same in all phases, so that the derivatives of the G(x,P0,T 0) surface must be

identical at all of the stable phase compositions. Therefore, the tangent to the G(x,P0,T 0) surface, taken at

one of the stable phase compositions, is tangential to the G(x,P0,T 0) surface at the compositions of all the

other phases in this multiphase configuration.

To link the tangent plane criterion to the dual problem, we denote the partial derivative of G(x,P0,T 0) with

respect to some mole fraction xi at some composition xS by

gS
i =

(
∂G(xS,P0,T 0)

∂xi

)
x j �=i, j=1,...,nc−1,P,T

for i = 1, ...,nc−1. (15)

Let us consider that the phase composition xS is stable and write the equation of the tangent plane, GT (x,P0,T 0;xS),

to the G(x,P0,T 0) surface at xS:

GT (x,P0,T 0;xS) = G(xS,P0,T 0)+
nc−1

∑
i=1

gS
i (xi − xS

i ). (16)

Since xS is stable, then the following must hold:

GT (x,P0,T 0;xS) ≤ G(x,P0,T 0) ∀x ∈ X , (17)

i.e., GT (x,P0,T 0;xS) is a supporting hyperplane of G(x,P0,T 0) over X .

By generalising the geometric discussion of duality in Section 2.2, it can be seen that the supporting hyper-

plane at the solution (x∗,λ ∗) of the dual problem (Dx) is given by

z = L(x∗,λ ∗)−
nc−1

∑
i=1

λ ∗
i (x0

i − xi). (18)

Introducing the definition of L, this can be rewritten as

z = G(x∗,P0,T 0)+
nc−1

∑
i=1

λ ∗
i (xi − x∗i ). (19)
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By comparing eqns. (16) and (19), it can be seen that the supporting hyperplanes arising from the tangent

plane criterion and from the solution of the dual problem are identical provided that x∗ is the composition

of the one of the stable phases and that λ ∗
i = gi, i = 1, . . . ,nc−1. Mitsos and Barton [27] have proved this

equivalence. In particular, they have shown that

1. Any global solution (x∗,λ ∗) of the dual problem describes a supporting hyperplane of the G(x,P0,T 0)

surface over X . This hyperplane has a gradient of λ ∗ and passes through the point x∗,G(x∗,P0,T 0).

2. The total composition of the mixture x0 lies in the convex hull of X∗, so that there exists a combination

of the composition vectors in X∗ that satisfies the mass balance constraint in problem (3).

3. (x∗,λ ∗) is a solution of the dual problem if and only if it characterises one of the stable equilibrium

phases.

Indeed, the inner problem can be linked to the phase stability problem at the overall composition by choos-

ing λ 0
i ≡

(
∂ G(x0,P0,T 0)

∂xi

)
T,P,xk �=i

. In this case, the objective function is the tangent plane distance, offset by a

constant λ 0
i x0

i . Under these conditions, the solution of the inner problem is equivalent to the minimisation

of the tangent plane distance, as carried out by, for example, Michelsen [6], McDonald and Floudas [21–

23, 49], Harding and Floudas [25] and Hua et al. [18, 28]. In the context of the dual optimisation approach

discussed here, if the global solution of the inner problem is GP, for this choice of λi value, then x0 is stable,

regardless of whether x0 is reported as the global solution of the problem.

3. The phase equilibrium problem as a dual problem in volume and composition

3.1. The Gibbs free energy as a function of volume

As mentioned in the introduction, the natural variables of the Gibbs free energy function are (x,P,T ), but

equations of state are almost invariably explicit functions of volume rather than pressure. There are some

advantages in working with the Helmholtz free energy, as highlighted in [19, 30, 39, 41]. In the context of

constant pressure phase equilibrium calculations using higher-than-cubic equations of state, robustness and

speed improvements may be achieved by removing the need to solve the pressure constraint P(x,V,T ) = P0

at each step in the calculation. For non-guaranteed solution methods, the use of a nonlinear solver at each

evaluation of the Gibbs free energy can be expected to consume a significant proportion of the solution

time. For a guaranteed method, the presence of an inner iteration makes it difficult to deploy deterministic

branch-and-bound methods such as BARON [51, 52] or αBB [53, 54].

The alternative formulation proposed by Nagarajan et al. [39, 40] overcomes these issues by recasting the

Gibbs free energy minimisation and the tangent plane criterion in terms of component molar densities so

that the pressure constraint is satisfied at the solution of the problem without being solved explicitly. In

this section, we show how a formulation in the volume-composition space can be deployed within the dual

framework of [27]. This provides the theoretical basis for a practical implementation of this framework for

equation of state models.

Firstly, we recall a thermodynamic expression that will be central to this discussion, the relationship between

the Gibbs and the Helmholtz free energies:

G(x,P(x,V,T 0),T 0) = A(x,V,T 0)+P(x,V,T 0)V, (20)
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where P is pressure, V is molar volume and A(x,V,T 0) is the Helmholtz free energy at a fixed temperature

T 0. The standard thermodynamic relation between molar volume and pressure is:

P(x,V,T ) = −
(

∂A
∂V

)
x,T

. (21)

It may be observed from eqns. (20) and (21) that the value of G at a given composition, pressure and

temperature may not be unique if the EOS has more than one volume root, i.e., there may be more than one

value of V that satisfies eqn. (21). When multiple volume roots exist, we must select that which yields the

lowest value of G as the physically meaningful value of V . This implies that G(x,P0,T 0) must in fact be

minimised with respect to the implicit variable volume, i.e.,

G(x,P0,T 0) = min
V>0

[
A(x,V,T 0)+P0V

]
s.t. P0 = −

(
∂A
∂V

)
x,T

.
(22)

As noted by Nagarajan et al. [39, 40] (in the space of mole numbers), a stationary point of the unconstrained

problem

min
V>0

[
A(x,V,T 0)+P0V

]
(23)

satisfies the optimality conditions for the constrained problem (22). Indeed, the first-order optimality con-

dition of problem (23), that the first derivative of the objective function with respect to V must be equal to

zero, means that at the solution, the pressure is equal to P0:

∂
(
A(x,V,T 0)+P0V

)
∂V

∣∣∣∣∣
x,T

=
∂A(x,V,T 0)

∂V

∣∣∣∣
x,T

+P0 = 0 (24)

Using eqn. (21), this is equivalent to

P(x∗,V ∗,T ) = P0, (25)

where (x∗,V ∗) denotes the solution of problem (23). Since the objective functions for problems (22) and

(23) are identical, the solution of problem (23) is also a solution of problem (22).

Returning now to the formulation of the phase equilibrium problem as a dual problem, we present our

main result, namely how this framework can be used to tackle the P,T phase equilibrium problem when

using complex EOSs. By working with the Helmoltz free energy in the space of its natural variables and

exploiting the properties of branch-and-bound algorithms, we develop in Section 4 a solution algorithm that

is guaranteed to find all stable phases.

3.2. Incorporating volume into the dual formulation

The result described by eqn. (25) may be employed to reformulate the dual problem (Dx) to avoid solving

explicitly for the volume roots of the EOS when evaluating the Lagrangian function. We consider the

following primal problem:

min
x,V

A(x,V,T 0)+P0V

s.t. x0
i − xi = 0 i = 1, ...,nc−1

x ∈ X ⊂ R
nc−1

V ∈ [V ,V ].

(Px,V )
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where we assume, without loss of generality that physical bounds for the volume V are set so that V ∈
[V ,V ]. In the examples we present, we work in packing fraction rather than volume: these two spaces are

mathematically equivalent (see Appendix A), and an upper bound for the packing fraction is provided by

the close-packing limit of hard spheres.

In developing a formulation of the phase equilibrium problem in the space of component molar densities,

Nagarajan et al. [39, 40] note that the linear mass balance constraints become bilinear. In problem (Px,V ),

because a single phase is considered, the mass balance constraint remains linear. This is a useful feature in

the context of guaranteed deterministic methods, as it removes one source of nonconvexity in the formula-

tion. From problem (Px,V ), we can formulate a dual problem as

max
λ∈Rnc−1

θV (λ )

s.t. θV (λ ) = min
x∈X ,V∈[V ,V ]

LV (x,V,λ )

s.t. LV (x,V,λ ) = A(x,V,T 0)+P0V +
nc−1

∑
i=1

λi(x0
i − xi).

(Dx,V )

We show that the inner problem of the dual in the x space for a given λ k,

min
x∈X

L(x,λ k) = min
x∈X

(
G(x,P0,T 0)+

nc−1

∑
i=1

λ k
i (x0

i − xi)
)

, (IPx)

and the inner problem of the dual in the x−V space for the same λ k,

min
x∈X ,V∈[V ,V ]

LV (x,V,λ k) = min
x∈X ,V∈[V ,V ]

(
A(x,V,T 0)+P0V +

nc−1

∑
i=1

λ k
i (x0

i − xi)
)

, (IPx,V )

have the same solution.

Firstly, the first-order optimality conditions for the unconstrained optimisation problem of eqn. (IPx) are

examined. They dictate that at the solution x̃, the partial derivative of L with respect to each component of

x must be zero:(
∂L(x̃,λ )

∂xi

)
P,T,λ ,xk �=i,k=1,...,nc−1

= 0, i = 1, . . . ,nc−1, (26)

so that,(
∂G(x̃,P0,T 0)

∂xi

)
P,T,λ ,xk �=i,k=1,...,nc−1

= λi, i = 1, . . . ,nc−1. (27)

Thus, by combining equations (7) and (27), it can be seen that, at the solution to the minimisation problem,

the undetermined multiplier λi is related to the chemical potential of component i by

λi = μi(x̃,P0,T 0)−μnc(x̃,P0,T 0), i = 1, . . . ,nc−1. (28)

Next, we conduct the same analysis on the first-order optimality conditions for the proposed formulation in

volume, problem (IPx,V ). The first-order derivatives of LV with respect to both x and the additional variable

V must be equal to 0 at the solution (x∗,V ∗):(
∂LV (x∗,V ∗,λ )

∂V

)
x,T

=
(

∂A(x∗,V ∗,T 0)
∂V

)
x,T

+P0 = −P(x∗,V ∗,T 0)+P0 = 0, (29)
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and (
∂LV (x∗,V ∗,λ )

∂ xi

)
xk �=i,V,T,λ
k=1,...,nc−1

=
(

∂A(x∗,V ∗,T 0)
∂xi

)
xk �=i,V,T

k=1,...,nc−1

−λi = 0, i = 1, . . . ,nc−1. (30)

The first relation, eqn. (29), ensures that the pressure is equal to the specified P0 at the solution of the inner

problem in the x-V space. This requirement is trivially met at the solution of the inner problem in the x

space, since G is calculated at P0. The second equation, eqn. (30), relates the Lagrange multiplier λi to the

chemical potential of component i. This relation is now expressed in terms of the Helmholtz free energy

at constant volume, rather than the Gibbs free energy at constant pressure. Next, we show that the two

conditions are in fact equivalent at the solution of the inner problem in the x-V space.

We begin by defining a function of volume and composition at constant temperature Ḡ(x,V,T 0) where,

Ḡ(x,V,T 0) = A(x,V,T 0)+P0V. (31)

Then,

dḠ(x,V,T 0) =
nc−1

∑
j=1

(
∂ Ḡ
∂x j

)
xk �= j ,V,T

k=1,...,nc−1

dx j +
(

∂ Ḡ
∂V

)
x,T

dV. (32)

Given the relation P = P(x,V,T ), the partial derivative of Ḡ with respect to xi, at constant xk �=i,P,T , is given

by (
∂ Ḡ
∂xi

)
xk �=i,P,T

k=1,...,nc−1

=
(

∂ Ḡ
∂xi

)
xk �=i,V,T

k=1,...,nc−1

+
(

∂ Ḡ
∂V

)
x,T

(
∂V
∂xi

)
xk �=i,P,T

k=1,...,nc−1

. (33)

The left-hand side of eqn. (33) is equal to the partial derivative of G(x,P,T ) with respect to xi. Using this

and the definition of Ḡ in eqn. (31),(
∂G(x,P,T )

∂xi

)
xk �=i,P,T

k=1,...,nc−1

=
(

∂A(x,V,T 0)
∂xi

)
xk �=i,V,T

k=1,...,nc−1

+
[(

∂A(x,V,T 0)
∂V

)
x,T

+P0

](
∂V
∂xi

)
xk �=i,P,T

k=1,...,nc−1

. (34)

But from eqn. (29), at the solution (x∗,V ∗) of the inner problem in the x-V space,(
∂A(x∗,V ∗,T 0)

∂V

)
x,T

= −P(x∗,V ∗,T 0) = −P0, (35)

so that, at the solution, eqn. (34) becomes(
∂G(x∗,P0,T 0)

∂xi

)
xk �=i,P,T

k=1,...,nc−1

=
(

∂A(x∗,V ∗,T 0)
∂xi

)
xk �=i,V,T

k=1,...,nc−1

. (36)

This implies that(
∂LV (x∗,V ∗,λ )

∂xi

)
xk �=i,V,T,λ
k=1,...,nc−1

=
(

∂L(x∗,λ )
∂xi

)
xk �=i,P,T,λ
k=1,...,nc−1

= 0, i = 1, . . . ,nc−1. (37)
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Since (x∗,V ∗) satisfies P(x∗,V ∗,T 0) = P0, eqn. (37) leads us to conclude that (x∗,V ∗) is a stationary point

of (IPx,V ), the inner problem in the x-V (Helmholtz) space, for a given λ if and only if x∗ is a stationary point

of (IPx), the inner problem in the x (Gibbs) space for this λ . V ∗ is the physical volume root corresponding

to minV∈[V ,V ] G(x∗,P0(x∗,V,T 0),T 0). The fact that the objective functions of problems (IPx) and (IPx,V ) are

equal whenever the physical volume root is used ensures that a stationary point of (IPx) is a minimum if and

only if the corresponding stationary point of (IPx,V ) is also a minimum.

Since the inner problems in the x and x-V spaces are equivalent, so are the dual problems (Dx) and (Dx,V )

in the x and x-V spaces. Consequently, the proof in [27] that the global solution of problem (Dx) is a stable

equilibrium phase may equally be applied to problem (Dx,V ).

3.3. The solution of the dual is a supporting hyperplane of the Helmholtz free energy

The solution of dual (Dx,V ) defines a supporting hyperplane of G(x,P0,T 0) over X , as does the solution of

dual (Dx). Interestingly, it may also be shown that the solution of the dual in the composition and volume

space (Dx,V ), and therefore the solution of the P, T phase equilibrium problem, also defines a supporting

hyperplane of A(x,V,T 0) over X × [V ,V ]. This is achieved by following the proof of [27] that the solution

of the dual (Dx) defines a supporting hyperplane of G(x,P0,T 0) over X .

Consider a solution (x∗,V ∗) of (IPx,V ) for some λ = λ ∗. The Lagrangian LV evaluated at this solution is as

follows:

L(x∗,V ∗,λ ∗) = A(x∗,V ∗,T 0)+P0V ∗ +
nc−1

∑
i=1

λ ∗
i (x0

i − x∗i ). (38)

Since (x∗,V ∗) minimises L(x,V,λ ∗) over all x ∈ X and V > 0, we can say that

L(x∗,V ∗,λ ∗) ≤ L(x,V,λ ∗), ∀x ∈ X ,V ∈ [V ,V ], (39)

and therefore that

A(x∗,V ∗,T 0)+P0V ∗ +
nc−1

∑
i=1

λ ∗
i (x0

i − x∗i ) ≤ A(x,V,T 0)+P0V +
nc−1

∑
i=1

λ ∗
i (x0

i − xi),

∀x ∈ X ,V ∈ [V ,V ]. (40)

Rearrangement of eqn. (40) yields:

A(x∗,V ∗,T 0)+P0(V ∗ −V )+
nc−1

∑
i=1

λ ∗
i (xi − x∗i ) ≤ A(x,V,T 0),

∀x ∈ X ,V ∈ [V ,V ], (41)

or equivalently, by making use of the first-order optimality conditions (29) and (30),

A(x∗,V ∗,T 0)+
(

∂A
∂V

)
x,T

(V −V ∗)+
nc−1

∑
i=1

(
∂A
∂xi

)
xk �=i,V,T

k=1,...,nc−1

(xi − x∗i ) ≤ A(x,V,T 0),

∀x ∈ X ,V ∈ [V ,V ], (42)

where the derivatives are evaluated at (x∗,V ∗,T 0). This proves that the solution (x∗,V ∗) defines a hyper-

plane that supports A(x,V,T 0) over X × [V ,V ] and that is tangent to A(x,V,T 0) at (x∗,V ∗), the composition

and volume of a stable phase.
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3.4. From phase stability to stable phase equilibrium

Once a global solution of the dual problem (Dx,V ) has been found, the optimal Lagrange multiplier vector λ ∗

is known, as are the chemical potentials of all the components μ∗
i , the composition and volume of one stable

phase x∗, V ∗, and the optimal value of the dual objective function θ D. In [27], it is suggested that other stable

phases can be found by finding all solutions to the equation G(x,P0,T 0) = G(x∗,P0,T 0) + λ ∗T (x− x∗),

using algorithms such as those described in [55, 56]. The equivalent formulation in the (x,V,T ) space at

pressure P0 and temperature T 0 is

A(x,V,T 0)+P0V = A(x∗,V ∗,T 0)+P0V ∗ +λ ∗T (x− x∗). (43)

The set of points (x̃,Ṽ ) that satisfy (43) is the set of all stable phases at the given conditions.

The property that all stable phases are global solutions of the dual problem can be used to propose an

alternative approach. The knowledge of θ D, the dual problem objective function value at the global solution,

can be used to define the tangent plane that passes through all the stable phases:

θ D = A(x,V,T 0)+P0V +
nc−1

∑
i=1

λ ∗
i (x0

i − xi). (44)

By definition, θ D is also the objective function value of the dual and of the inner problem (IPx,V ) at λ ∗.

Thus, identifying all points that satisfy eqn (44) is equivalent to finding all the global solutions of the inner

problem where λ = λ ∗:

min
x∈X ,V∈[V ,V ]

A(x,V,T 0)+P0V +
nc−1

∑
i=1

λ ∗
i (x0

i − xi). (45)

Although finding all solutions of (43) or of (45) is equivalent, finding all (global) solutions of (45) can be

achieved very efficiently as a final step of the solution of the dual problem (Dx,V ), once (x∗,V ∗,λ ∗) have

been found. The practical aspects of such an implementation are discussed in the next section.

4. Algorithms for the solution of the phase equilibrium problem in the volume-composition space

Problem (Dx,V ) is a bilevel programming problem that can be equivalently framed as a semi-infinite pro-

gram (SIP):

max
v,λ∈Rnc−1

v

s.t. v ≤ A(x,V,T 0)+P0V +
nc−1

∑
i=1

λi(x0
i − xi) ∀x ∈ X ,V ∈ [V ,V ]

v ≤ GP

(46)

A number of techniques have been developed to solve such problems [57–59]. Recent work on global

optimisation approaches to the solution of SIP and bilevel problems is reviewed in [60], and there has been

much recent progress on the solution of nonconvex bilevel problems ([61–64]). We present an algorithm

to solve the volume-composition phase equilibrium problem by identifying all global solutions of problem

(Dx,V ), (λ ∗,x∗,l ,V ∗,l), l = 1, . . . ,np, where np is the number of global solutions or phases (not known a

priori). It is based on that in [27], following the general framework of Blankenship and Falk [57], but
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incorporates a number of modifications to find all stable phases and to enhance performance. The method

is suitable for any EOS formulated in the (x,V,T ) space. The only property required for the P,T flash

calculation is a continuous Helmholtz free energy surface.

In the first stage of the algorithm, we focus on finding one of the global solutions of the problem, i.e., the

unique vector λ ∗ which is common to all phases and a phase coordinate (x∗,1,V ∗,1). In the second stage,

we use a post-processing step in order to find all other global solutions. The first stage of the algorithm

is a cutting plane method [46, 57]. It consists of two alternating steps; a linear maximisation in λ , the

outer problem, and a non-linear minimisation in (x,V ), the inner problem. When the solutions to these two

problems converge to within an optimality tolerance ε , the algorithm is terminated. The outer problem is a

linear approximation of the dual problem and it has the following form:

UBDV = max
v,λ∈Rnc−1

v

s.t. v ≤ A(xm,V m,T 0)+P0V m +
nc−1

∑
i=1

λi(x0
i − xm

i ) ∀[xm,V m] ∈ M

s.t. v ≤ GP

(OPx,V )

where UBDV is an upper bound on θ D, M is a set of points (x,V )∈ X × [V ,V ]. The set M initially consists

of a set of 2(nc−1) points. The solution of this outer problem yields a vector λ , which is then used in the

formulation of the inner problem (IPx,V ). The solution of the inner problem provides a new coordinate [x,V ]

that can be added to set M , thereby adding a new cutting plane to the outer problem. As will be discussed,

in our approach, it is sometimes possible to generate more than one [x,V ] point for a given value of λ . The

outer problem and inner problem also provide upper and lower bounds on the global solution of the dual

problem. The algorithm iterates between the solution of the two problems until these bounds converge to

within a specified tolerance.

We do not require the cutting planes generated by the solution of (IPx,V ) to be tangential to the dual func-

tion although, in principle, non-tangential planes may increase the number of iterations required to solve

the problem. The advantage of such an approach is that the cutting planes are obtained by performing a

local optimisation, whereas a tangential approximation requires the application of a global optimisation

algorithm. The cost of each new plane is thus significantly lower than in a tangential algorithm. Further-

more, in practice, good quality cutting planes tend to be identified by the local optimiser, especially if a

few different starting points are used. Convergence of the proposed algorithm is guaranteed by using global

optimisation when the results of the local optimisation indicate convergence has been achieved, or when

the local optimisation fails to return a suitable solution. We also propose an alternative formulation of the

inner problem which speeds up the global solution of the inner problem when it is required.

Before presenting the algorithm, we discuss the basic elements of the approach: the initialisation strategy,

the implications of using a local solver for the inner problem, alternative formulations for the inner problem,

the identification of all stable phases, and a strategy for dealing with small mole fractions.

4.1. Problem initialisation

At the start of the algorithm, both an initial guess and bounds are required for λ . The choice of values

affects the performance of the algorithm by determining the initial upper and lower bounds on the global
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solution. With a view to algorithmic efficiency when the state of the system is unknown, we initialise λ to

be the gradient of the Gibbs free energy surface at x0 i.e., λ 0
i =

(
∂G
∂ xi

)
xi=x0

i ,P,T
. This allows the first iteration

to double as a stability test, whereby if the global solution of the first inner problem lies at GP and (x0,V 0),

then the total composition corresponds to a stable phase. Furthermore, if there is only one global solution to

the inner problem, the system is in a single phase at (x0,P0,T 0). If the feed is stable, but there are multiple

global solutions, then the overall composition lies on a phase boundary. Other global solutions correspond

to these stable phases.

Bounds for λ can be specified by selecting appropriate values of the composition (and volume) and using

them to initialise the set M , and hence the set of constraints in the outer problem (OPx,V ). The bounding

scheme for λ detailed in [27] is effective, except when the mole fraction of one component in the feed is

very low, in which case wide bounds are obtained. We retain the notation of [27] where two composition

vectors, xi and x̂i, are chosen to bound each λi. xi has the property xi
i > x0

i and x̂i that x̂i
i < x0

i . In reference

[27], the x̂ and x are such that the lower and upper bounds for a given λi depend inversely on x0
i − x̂i and

x0
i − xi. When those differences are small (i.e., when x0

i is very close to 0 or 1), the bound on λi becomes

very loose. The scheme proposed here ensures that the bounds on λi depend on the entire x0
i − x̂i and x0

i −xi

vectors and therefore do not suffer from this problem. The modified bounding scheme retains the idea of

choosing bounds to enclose x0, but ensures that the scheme remains effective when some components are

present in small mole fractions. The simple bounding scheme that we have implemented takes values on

either side of x0
i , for a given component, i, and then assigns equal contributions to the rest of the initialisation

vector. This is as follows:

x̂i
i = x0

i
2

x̂i
k = 1−x̂i

i
nc−1 , for k = 1, . . . ,nc, k �= i

xi
i = 1+x0

i
2

xi
k = 1−xi

i
nc−1 , for k = 1, . . . ,nc, k �= i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
for i = 1, . . . ,nc−1. (47)

This produces a set of initial compositions M 0, which lead to:

v ≤ A(x̂i,V̂ i,T 0)+P0V̂ i +
nc−1

∑
k=1

λk(x0
k − x̂i

k)

v ≤ A(xi,V i
,T 0)+P0V i +

nc−1

∑
k=1

λk(x0
k − xi

k) for i = 1, ...,nc−1.

(48)

It can be shown that the set of inequalities in (48) provide lower and upper bounds on each λi. V i
and V̂ i

can either be chosen to solve the pressure equation for a given xi or x̂i, respectively, or can simply take any

feasible value (V ∈ [V ,V ]). However, the bounds provided by the volumes corresponding to the specified

pressure P0 are likely to be tighter. If we recall that solution of the pressure equation is a minimisation of

free energy with volume (minV∈[V ,V ][A(x,V,T 0)+ P0V ]), then these bounds represent the lowest possible

cutting planes on θ(λ ) at xi or x̂i.

To illustrate this procedure, we construct the bounding compositions for a ternary system. Consider the
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following feed composition,

x0 =

⎛⎜⎜⎝
0.2

0.3

0.5

⎞⎟⎟⎠ . (49)

The outer problem for such a feed composition is initialised with the following four points in composition:

x̂1 =

⎛⎜⎜⎝
0.10

0.45

0.45

⎞⎟⎟⎠ ; x1 =

⎛⎜⎜⎝
0.6

0.2

0.2

⎞⎟⎟⎠ ; x̂2 =

⎛⎜⎜⎝
0.425

0.150

0.425

⎞⎟⎟⎠ ; x2 =

⎛⎜⎜⎝
0.175

0.650

0.175

⎞⎟⎟⎠ . (50)

For each point in composition, we locate the volume root at the lowest Gibbs, free energy for the fixed

composition. These points in composition and volume are then used to initialise the set M . It can be shown

that the set of cutting planes thus generated provides upper and lower bounds on all components of the λ

vector.

4.2. Use of local solutions to the inner problem

The inner problem plays two roles in the solution of the dual problem: for a given λ k, it is used to generate

good quality cutting planes for the master problem, by identifying composition-volume points for which the

Lagrange function LV (x,V,λ k) is low; it is also used to generate a valid lower bound on the dual function

and hence to allow a convergence test to be applied. Identifying a local solution (xk,V k) of the inner problem

rather than the global solution (xk,∗,V k,∗) is attractive as it is computationally less demanding. It has the

following implications:

• A cutting plane

c(λ ) = A(xk,V k,T 0)+P0V k +
nc−1

∑
i=1

λ (x0
i − xk

i ) (51)

resulting from a non-global solution is valid but is not tangential to the dual objective function. Thus,

including this cut in the master problem rather than the cut corresponding to the global solution

(xk,∗,V k,∗) results in an approximation of the dual problem that is less tight, leading to a looser upper

bound on the global solution θ D than might have been obtained with a tangential plane. This concept

is represented in figure 3. It implies that any coordinate of [x ∈ X ,V ∈ [V ,V ]] is a valid upper bound

on θ D. The use of such a cutting plane may increase the number of iterations required to achieve

convergence of the algorithm. In addition, it is possible for such a cutting plane to be redundant,

so that solving the master problem with this new cut does not yield an improvement on the upper

bound and, more importantly, does not yield a new vector λ . In this case, it is essential to generate an

improved cut for λ k. This can be done by solving the inner problem to global optimality. In practice,

it is not necessary to identify a global solution of the inner problem: a point with a lower objective

function than (xk,V k) may suffice.3

3In the implementation discussed here, we solve the inner problem to global optimality in such cases.
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• The value of the objective function of the inner problem obtained by using a local solver is not

necessarily a valid lower bound on the global solution of the problem. This implies that this value

cannot be used to determine conclusively whether convergence has been achieved. It is stored as a

tentative lower bound. When the difference between the global upper bound and the highest tentative

lower bound is within the convergence tolerance, the inner problem must be solved globally. The

resulting global lower bound then indicates whether convergence has indeed been achieved, i.e., the

local solution of the inner problem is in fact its global solution. If not, the upper bounding problem

is then solved again to provide a new guess for λ . In cases where a non-global solution to the inner

problem is found by the local solver, it is possible for the tentative lower bound to be greater than the

global upper bound. In this instance, a better solution to the inner problem must be sought. This can

be done by solving the inner problem to global optimality or running a global solver until it identifies

a better solution.

4.3. Alternative formulations of the inner problem

The inner problem (IPx,V ) is a bound-constrained nonlinear problem. In deterministic global optimisation

algorithms, improvements in computational performance may be achieved by adding redundant constraints,

that do not change the solution of the problem, but that may affect the performance of the global solver by

allowing tighter relaxations of the nonconvex problem to be constructed [65–68]. These added constraints

can reduce the size of the feasible region of the convex relaxation significantly, and hence lead to much

better lower bounds. In the case of a problem with only linear constraints such as (IPx,V ), the only redun-

dant constraints that may be added are the first-order optimality conditions, eqs. (29) and (30). In our

experience, explicit inclusion of the pressure constraint (29) greatly reduces the number of nodes explored

by spatial branch-and-bound (sBB) global optimisation algorithms, such as BARON [51, 52] and αBB4

[53, 54, 69], during the solution of the inner problem. This usually leads to improvements in computational

time, although this is dependent upon the additional computational load incurred by the inclusion of these

constraints in the optimisation problem. The inclusion of the chemical potential constraints (30) does not

consistently improve computational performance and is therefore not recommended. The following inner

problem formulation for a given λ k is then used when a deterministic global optimisation algorithm is

applied:

min
x∈X ,V∈[V ,V ]

LV (x,V ;λ k)

s.t. −
(

∂A(x,V,T 0)
∂V

)
x,T

= P0.
(IP

global
x,V )

One of the features of the formulation in the x−V space is that it is not necessary to solve the pressure

equation explicitly and the introduction of (29) in the formulation of the inner problem at first seems to

negate this. It should however be noted that the pressure equation is not solved at every evaluation of the

objective function, as is the case in the composition space. In the inner problem of the sBB algorithm, a

convex relaxation of the pressure equation is included, which requires simple evaluations at each iteration

4The αBB implementation of the algorithm will be described in a subsequent publication.
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rather than the use of a nonlinear solver. It is not necessary to include the pressure equation in the outer

problem for the sBB algorithm, but it is advantageous to do so from the point of view of implementation,

provided that an infeasible path local solver is used. The inclusion of the constraint ensures that the accuracy

with which the pressure at the solution of the outer problem matches P0 is high. This is because this

constraint can then be enforced through a feasibility tolerance that is tighter than the optimality tolerance.

4.4. Finding all stable phases

All stable phases present at equilibrium are solutions to the dual problem. Therefore, when the algorithm has

converged to the equilibrium value of λ , each stable phase is a global solution to the inner problem (IPx,V )

or, equivalently, (IP
global
x,V ). If a spatial branch-and-bound algorithm (sBB) is used to solve the inner problem,

it is not able to discard or fathom any of the nodes containing the stable phases, since all these solutions

are equally good (see [50] or [70] for a discussion of spatial branch and bound methods). Depending

on the implementation used, the sBB algorithm either explores the branch-and-bound tree until the list of

lower bounds is empty, in which case it must report all global solutions, or, as is more often the case, it

terminates once the upper and lower bound have converged to within the optimality tolerance. In such

implementations, when the sBB algorithm reports one solution, there are other nodes in its list of lower

bounds that are of equivalent quality (within ε , the optimality tolerance). However, global optimisation

algorithms are not generally set up to return all solutions. In particular, while there may be several nodes

with equivalent lower bounds, one needs to ascertain how many global solutions (none, one or more) lie in

each of the regions of the variable space defined by these nodes. Thus, some post-processing is necessary on

the final list of nodes. Each node that remains in the list once the first global solution has been found must

be analysed and convergence can only be achieved once all the regions in the list are smaller than a given

size (e.g., using the infinity norm) and have been shown to contain a solution to (IP
global
x,V ). The solutions to

(IP
global
x,V ) remaining in the list at this stage can be reported as the stable phases.

4.5. Dealing with small mole fractions

When searching for solutions of the phase equilibrium problem with a guaranteed deterministic approach, it

is usually necessary to bound the mole fractions with a small but finite number, e.g. 10−16, to avoid numer-

ical difficulties arising from the evaluation of logx at small mole fractions (e.g. [18]). Phases containing at

least one component in very small amounts are often encountered when dealing with polymer-solvent mix-

tures. The range of mole fractions accessible for exploration can be extended by formulating the problem

in terms of logarithms of mole fractions, or in terms of logarithms of mass fractions. This can, however,

lead to slow convergence of the algorithm as large regions of very small mole fractions typically need to be

explored by the branch-and-bound algorithm. A reliable, if not guaranteed, way to deal with this issue is

to use a larger lower bound on the mole fractions, such as 10−8 and to adjust the convergence tolerance to

avoid eliminating phases prematurely, e.g. 10−5: if the true mole fraction of a phase is below the chosen

lower bound, an approximate solution will be found at the bound within an appropriate convergence toler-

ance. If such a solution is identified, its accuracy can then be increased by solving locally a two-dimensional

constrained problem in the mole fraction be to refined, and in volume (where the search is in the logarithm
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of both variables). This constrained problem is formulated to find a mole fraction satisfying the optimality

criteria on the specified pressure and the equilibrium chemical potential:

min
xk, j∈X̂ ,Vj∈[V ,V ])

(μk, j(xk, j,Vj)−μ∗
k )2,

s.t. Pj(xk, j,Vj) = P0.

(52)

where xk, j is the mole fraction in phase j, to be refined, X̂ is the modified search area corresponding to a

smaller lower bound (e.g., 10−50), μk, j is the chemical potential of the trace component k in phase j and μ∗
k is

the equilibrium chemical potential of component k (related to the optimal value of the Lagrange multiplier,

λ ∗
k ). Pj is the pressure of phase j and P0 the pressure specified for the flash calculation. The lower bound

on the mole fraction being explored can be set to a very small value, since the use of logarithmic space

reduces the numerical difficulties associated with setting very low bounds on x. Alternatively, the approach

proposed by Lucia et al. [15] can be used to refine the phase composition.

4.6. The phase equilibrium algorithm

The proposed algorithm is summarised in Table 1 as a procedure and in figure 4 as a flowchart. In subse-

quent discussions, we will refer to this algorithm as the ‘Local+Global’ approach. In the first step of the

algorithm, variables are initialised. This includes the iteration counter, k, the upper bound UBD, which

is set equal to the Gibbs free energy at the total composition (following computation of the stable volume

root), the lower bound LBD, which is set to −∞, an empty list of tentative lower bounds L , the vector

of Lagrange multipliers, λ (0), which is set to g0, the partial derivatives of G with respect to x at the total

composition, and the set of cutting plane points M .

In the second step, a cutting plane is obtained by solving the inner problem (IPx,V ) locally several (Nlocal)

times from different starting points and retaining the best (lowest) solution. The objective function value at

the solution is added to the set L and the corresponding variable values to M . If no solution is found, the

algorithm proceeds to Step 5, where the modified inner problem (IP
global
x,V ) is solved globally. If a solution to

the inner problem has been found, a test is applied in Step 3 to determine whether the inner problem needs

to be solved globally.

The test in Step 3 is passed when the upper bound and the local lower bound are within a specified tolerance,

indicating that the algorithm may have identified the global solution. It is also passed when the tentative

lower bound is greater than the upper bound, indicating that the global solution of the inner problem has

not been found by the local solver. In both cases, the algorithm proceeds to Step 5 to identify a guaranteed

lower bound by solving the inner problem globally. If the test in step 3 fails, this indicates that the local

solution of the inner problem has generated a cutting plane that can be added to the outer problem.

The outer problem (OPx,V ) is then formulated in Step 4 using all points in M and solved. The solution of

this outer problem (UBDV,k) is taken as the new upper bound on the solution of the dual. This maximisation

step also results in a vector of Lagrange multipliers, λ k. If a different λ vector is found as the solution to

the problem from that at the previous iteration, this vector is guaranteed to be closer to the global solution

of the dual problem. In this case, a major iteration has been completed and the algorithm proceeds to Step
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7 where the iteration counter is incremented. The algorithm then returns to Step 2 where the inner problem

is solved locally.

If the solution of the outer problem does not result in a new λ , the last cutting plane was too loose and

a tangent plane is generated to replace it. This is done by proceeding to Step 5 and solving the inner

problem to global optimality. This step is crucial as it guarantees the finite convergence of the algorithm to

ε-optimality. There are thus three instances when the global optimisation of the inner problem is necessary.

These can be seen most clearly in figure 4: (i) when the local solver fails to find a solution to the inner

problem; (ii) when the local solver returns a solution that indicates convergence or that is greater than the

upper bound; (iii) when the local solution of the inner problem generates a cutting plane that does not add

any information to the outer problem. When Step 5 is carried out, a tangential plane and a valid lower

bound on the dual solution are obtained. If the lower bound is greater than the current lower bound LBD,

LBD is updated. Convergence is then tested in Step 6. If the test is satisfied, all the global solutions of the

inner problem solved in Step 5 are identified and reported as stable phases.

The use of cutting planes and tangent planes is illustrated in figure 3. As can be seen in figure 4, the

global solution of the inner problem lies at the heart of the algorithm. Convergence can only be reached

if the global solution of the inner problem is obtained out at least once. In practice, the need for global

optimisation usually arises only at the final iteration, in which convergence is proved with a mathematical

guarantee. The use of multiple random start local minimisations means that the global minimum of the inner

problem is identified frequently enough so as not to impact significantly on the final iteration count. The

route followed by the algorithm at other major iterations is highlighted by the thick black lines in figure 4.

4.7. Other algorithms for the solution of the phase stability problem in the volume-composition space

The algorithm of [27] can be used to solve the phase stability problem in the volume-composition space.

The outer problem is given by (OPx,V ) and the inner problem by (IPx,V ). The inner problem is solved to

global optimality at each iteration. We have implemented this algorithm in the volume-composition space,

replacing the initialisation strategy of [27] with that described in Section 4.1 and including a final post-

processing step to find all phases. We refer to this approach as the “Global” algorithm.

This algorithm can be extended to use the alternative formulation of the inner problem, (IP
global
x,V ). We have

also tested this option, to study the impact of the additional constraint on the performance of the global

optimisation solver. We refer to this approach as “Global+Constraint”.

5. Computational results

In order to assess the proposed formulation and the Local+Global algorithm, we carry out P,T flash calcula-

tions for a number of different systems. To illustrate the general concept, we begin by applying this method

to solve for VLE, LLE and VLLE in hypothetical systems, modelled with an augmented van der Waals

EOS [71–74]. A reliable algorithm for solving phase equilibrium in these systems, where the molecules

are of equal size, has been developed by Giovanoglou et al. [2, 3]. This allows us to assess the adequacy

of our method on both two- and three-phase systems. We then proceed to calculations for highly asym-

metric systems that exhibit the behaviour characteristic of solvent + polymer mixtures, modelled with the
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SAFT-HS (statistical associating fluid theory for a hard sphere reference) EOS [75]. Solvent-polymer sys-

tems exhibit highly non-ideal phase behaviour, and present a difficult challenge to any phase equilibrium

solution method. In particular, the quantity of polymer in one of the phases is often very small, which can

lead to numerical problems in phase equilibrium calculations. In addition, for polymer chain lengths of

greater than six times that of the solvent, type V phase behaviour (according to the classification of Scott

and van Konynenberg [76]) may be observed with a SAFT-like description [77]. This includes LLE at some

conditions, bounded by a VLLE three phase line and a lower critical solution temperature (LCST). This

region in particular can lead to failure in some flash algorithms. Again, these systems exhibit both two- and

three-phase regions, therefore an algorithm that does not require the a priori specification of the number of

phases present at equilibrium is beneficial.

Following the presentation of the method for binary systems, we investigate the performance of the algo-

rithm for ternary solvent + polymer mixtures with SAFT-HS model systems that exhibit VLE, LLE and

LLLE. A method guaranteeing global stability is important with such highly non-ideal systems. Any re-

liance on initial guesses from nearly ideal systems, for example, could result in convergence problems, since

such starting values may be far away from the true behaviour. In addition, the need for initial guesses in

volume can create problems when moving between regions of VLE and LLE, since there is a discontinuity

in the phase volumes when moving between these regions.

For each mixture, we use the three algorithms discussed in Section 4, comparing the results of the “Global”

and “Global+Constraint” approaches to examine the impact of adding the optimality condition on pres-

sure as a constraint in the inner problem, and comparing the results of the “Global+Constraint” and “Lo-

cal+Global” approaches to quantify the impact of solving the inner problem with local methods. We show

point calculations at fixed (x0,P0,T 0) and also include the P− x or T − x phase diagrams for the binaries,

and triangular phase diagrams at fixed T 0,P0 for the ternaries, to demonstrate the consistency of the results

over different systems and phase configurations.

5.1. Implementation

The three algorithms described in Section 4 have been implemented in GAMS 23.2 [78], using BARON

V8.1.5 [52] for global optimisation, MINOS 5.51[79] as the nonlinear local solver, and CPLEX 12.1.0 [80]

for linear problems. Throughout, the different EOSs used have been implemented in the packing fraction

and composition space, since these variables are well bounded and many of the expressions in the EOS used

as numerical examples can most naturally be formulated in packing fraction. Although the presentation of

the dual problem in previous sections was in the more ‘intuitive’ space of volume, a proof that working

either in packing fraction or volume produces equivalent results is presented in Appendix A.

One difficulty in implementing the phase equilibrium algorithm is that, although BARON can return mul-

tiple solutions of the inner problem, it is not set up to return only global solutions. We have found that the

most effective way to identify all other phases is with a final ‘multi-solution’ iteration, after convergence

of the dual. Thus, the inner problem for the optimal λ ∗ vector is solved a second time. Throughout the

calculations in this article we select the BARON option to return three solutions during the final iteration

for a binary and four for a ternary, with a minimum separation between these solutions of 10−4. One may
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subsequently examine these solutions to ascertain how many phases or global solutions are present.

The absolute optimality tolerance used for the dual (stability) problem is ε = 10−7. The optimality tolerance

for BARON, MINOS and CPLEX is ε = 10−8. In all problems, we set X = [10−8,1], and use the approach

described in Section 4.5 to identify components present in mole fractions smaller than 10−8. As will be

shown, we use packing fraction η instead of volume V and set initial bounds on η to [10−6,0.73]. The latter

value corresponds to the close-packing limit of hard spheres, well above the fluid/solid packing fractions

observed in real systems. A value of Nlocal = 2, 5 or 15 is used for the Local+Global runs, as indicated. The

calculations are carried out on an HP Workstation (Intel Xenon, 3GHz).

5.2. Calculations with an augmented van der Waals EOS

To demonstrate the reliability of the method and its implementation, we begin by comparing our results to

the work of Giovanoglou et al. [2, 3] who developed a reliable deterministic scheme for the solution of

phase equilibria with an augmented van der Waals (AVDW) EOS [71–74], for binary mixtures of spherical,

equal sized components. The spheres are assumed to have a volume (b) set equal to 1 for convenience,

therefore packing fraction (η) and density (ρ) are equivalent, η = ρ . In this approach, the Helmholtz free

energy of such a binary mixture is given by:

A
NkT

=
2

∑
i=1

xi ln(xiη)−1+
4η −3η2

(1−η)2
− η

T ∗
2

∑
i=1

2

∑
j=1

xix j
αi, j

α2,2
, (53)

where αi, j is the van der Waals constant.

The phase equilibrium calculations in our work are conducted at constant temperature, therefore the purely

temperature dependent (kinetic) terms have been excluded from the ideal part of eqn. (53). The correspond-

ing Gibbs free energy (where the pressure features as a constant, P0) is therefore given by:

G
NkT

=
A

NkT
+

P0V
NkT

=
2

∑
i=1

xi ln(xiη)−1+
4η −3η2

(1−η)2
− η

T ′
2

∑
i=1

2

∑
j=1

xix j
αi, j

α2,2
+

P
′

T ′η
. (54)

The temperature and pressure are scaled by the attractive constant of the second component, and are de-

scribed in terms of the reduced units T
′

and P
′
:

T
′
=

kT b
α2,2

, (55)

P
′
=

P0b2

α2,2
. (56)

By writing the free energy in this reduced form only two parameters are required to describe the attractive

interactions of the binary mixture, α1,1/α1,2 and α1,2/α1,2. One may observe from eqn. (54) that this EOS

is a higher-than-cubic function in volume, a property of most complex EOSs.

We present calculations for two of the model systems studied by Giovanoglou et al. [3]. System A has a

fluid phase equilibria of type I according to the classification of van Konynenburg and Scott [76], indicating

that the only phase splits occurring at any conditions within the fluid range are vapour-liquid (VLE), and

that this system forms a maximum of two phases at equilibrium. For example, a binary mixture of methane

and carbon dioxide exhibits this type of phase behaviour. System B displays type II phase behaviour [3,
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76], which is characterised by the liquid phase demixing at low temperatures (below the upper critical

solution temperature, UCST). At low pressures, a three-phase line terminating at an upper-critical end

point is observed. Real systems exhibiting this kind of phase behaviour include mixtures of alkanes and

perfluoroalkanes, and mixtures of CO2 and alkanes of intermediate chain length (i.e., C8-C12) [81]. We will

use this system to demonstrate the ability of the new method to predict accurately the number of phases

present at equilibrium, by carrying out a calculation at the conditions of the three-phase line.

For both systems, we have tested test the consistency of the approach around all areas of the phase diagram,

especially in challenging regions such as the vicinity of three-phase lines, where there may exist very small

regions of two-phase separation, and also near critical points. We have carried out many thousands of

calculations over a wide range of conditions, for the two systems highlighted and for others not included

here. We report the first calculation in more detail to provide some insight into the proposed approach. All

calculations are carried out with the ‘full’ Gibbs free energy, as opposed to the Gibbs free energy of mixing,

where the free energy of the pure components is subtracted from the total free energy [81]. However, the

free energy of mixing ΔGmix is plotted where the Gibbs free energy-composition functions are shown for

illustrative purposes, since the curvature of the surface is more pronounced and clearer to visualise. To

obtain the ΔGmix plots, we first obtain the Gibbs free energy at the most stable volume root for each of

the pure components. We then step in composition, minimising the Gibbs free energy with volume at each

fixed composition, to obtain a function at specified pressure and temperature. Finally we subtract the pure

component Gibbs free energies, weighted by the mixture composition at the point of interest, to produce

ΔGmix.

5.2.1. System A: VLE with the AVDW EOS

We begin with an example of VLE in a type I mixture, as defined by the classification of van Konynen-

burg and Scott [76]. Attractive constants of α1,1/α1,2 = 0.5 and α1,2/α1,2 = 0.8 are examined by [3] and

correspond to a type I mixture. We carry out a flash calculation at T
′
= 0.061295, P

′
= 3× 10−3 and

x0
1 = 0.7 using the Local+Global algorithm. To clarify the algorithmic steps as far as possible, we illustrate

the progression of the algorithm through the major iterations. This is presented in table 3. The only major

iteration that requires the solution of the inner problem to global optimality is the final iteration. The purely

global algorithms (Global or Global+Constraint) converge in the same number of major iterations. The

stable phase compositions identified are shown in table 2. There are two phases present at equilibrium for

this combination of (x0,P
′
,T

′
), one liquid and one vapour with compositions and densities corresponding

to the results of [3]. The P
′ − x1 diagram for this system at T

′
= 0.061295, obtained though a series of

independent calculations, is shown in figure 5 (a). Again, this is in agreement with the work of [3].

To give an idea of the functions involved in these phase equilibrium calculations, the Gibbs free energy

of mixing (ΔGmix) plotted against the mole fraction of component 1 (x1) is shown in figure 5 (b). The

compositions of the stable phases are indicated by filled circles. We also show the function θ(λ ) (c), and

the set G (d), for this case study.
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5.2.2. System B: VLLE with the AVDW EOS

This system exhibits type II fluid phase behaviour, and was also examined in [3]. It is modelled with the

AVDW EOS, now with attractive constants of α1,1/α1,2 = 0.5 and α1,2/α1,2 = 0.69. To demonstrate the

ability of the method to predict correctly the number of phases present we perform a flash calculation at

conditions corresponding to the three-phase line, T
′
= 0.051865 and P

′
= 0.0024981. The procedure in

this calculation is exactly the same as for the example with system A, though there are now three phases

in coexistence. The Local+Global algorithm identifies the optimal λ ∗ vector after 4 iterations, though the

global optimisation routine is called twice during the procedure. The properties of the three stable phases

at the specified pressure and temperature are displayed in table 4. Once again, they are in agreement with

the work of Giovanoglou et al. [3]. The P
′ − x1 diagram for this system, obtained though a series of

calculations for different (x0
1,P

′
) combinations, is shown in figure 6 (a). A plot of ΔGmix against the mole

fraction of component 1 is also shown in figure 6 (b), along with of the location of the three stable phases.

The generality of this method is particularly useful for phase diagrams such as that shown in figure 6 (a),

where there may be VLE or LLE, depending on the global composition. No initial guesses are required,

neither in terms of the number of phases, nor in terms of their compositions and volumes, meaning that no

assumptions are made as to whether a phase is liquid or vapour.

5.3. Binary systems modelled with the SAFT-HS EOS

We now consider examples of phase equilibrium calculations in model polymer + solvent systems. This

phase behaviour is more challenging from a numerical perspective since the phase splits may be very ex-

treme, often including at least one almost-pure phase. The SAFT-HS EOS [75, 82–85] is implemented

for these examples. The dispersion interactions are treated at the van der Waals mean-field level and cal-

culations are restricted to mixtures of non-associating chain molecules. This EOS allows the entire range

of fluid phase behaviour, except type VI [86], to be reproduced, providing a wealth of challenging test

cases. In our case studies, all segments are of the same size and interact with the same attractive energy

i.e., α11 = α22 = α12..... etc. This means that the only difference between molecules is their chain length.

The binary mixtures are modelled as containing one component consisting of a single, spherical segment

(m1 = 1) of diameter σ and a second component consisting of m2 tangentially bonded spherical segments

(m2 > 1) also of diameter σ . As with the AVDW EOS, the calculations are carried out at reduced tem-

peratures and pressures. The simplified version of the SAFT-HS EOS that we implement in this work is

essentially the AVDW EOS with the addition of a contribution to the free energy from the formation of

a chain of tangentially bonded spherical segments. The Helmholtz free energy A of a molecule may be

written as the sum of ideal (AIDEAL), hard sphere (AHS), mean field (AMF) and chain (ACHAIN) terms:

A
NkT

=
AIDEAL

NkT
+

AHS

NkT
+

AMF

NkT
+

ACHAIN

NkT
. (57)

In a mixture of nc components, all constructed from segments of diameter σ , the chain term is as follows:

ACHAIN

NkT
= −

nc

∑
i=1

xi(mi −1) ln[gHS(σ)], (58)
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where [87]

gHS(σ) =
1−η/2

(1−η)3
. (59)

The packing fraction is no longer equivalent to density, since the chain molecules contain more than one

spherical segment. The relationship between packing fraction and density is now:

η = ρ
nc

∑
i=1

ximi. (60)

Since the dispersive energies of the molecules are modelled as identical (α = α11 = α12 = α22, etc.), the

mean-field term reduces to

AMF

NkT
= − ρ

kT
α

(
nc

∑
i=1

ximi

)2

= − η
T ′

(
nc

∑
i=1

ximi

)2

. (61)

The total Helmholtz free energy of a multi-component system modelled with the SAFT-HS EOS, where the

the attractive interactions of all components are identical is therefore:

A
NkT

=
nc

∑
i=1

xi ln(xiρ) − 1 +
nc

∑
i

ximi
4η −3η2

(1−η)2
− η

T ′

(
nc

∑
i=1

ximi

)2

−
nc

∑
i=1

xi(mi − 1) ln[gHS(σ)]. (62)

As with the AVDW EOS, to obtain the Gibbs free energy we add a ‘PV ’ term to eqn. (62), giving:

G
NkT

=
nc

∑
i=1

xi ln(xiρ)−1+
nc

∑
i

ximi
4η −3η2

(1−η)2
− η

T ′

(
nc

∑
i=1

ximi

)2

−
nc

∑
i=1

xi(mi −1) ln[gHS(σ)]+
nc

∑
i=1

ximi
P

′

T ′η
. (63)

The first mixture considered is one of a spherical solvent and a polymer chain of ten segments, as studied

by Paricaud et al. [77]. The second example is a system with a spherical solvent and a polymer chain of

100 segments, and the third mixture with a polymer of 1000 segments.

5.3.1. System C: VLLE in a solvent + polymer system

System C is the first solvent + polymer system considered. The “solvent” has a chain length m1 = 1 and

the “polymer” has a chain length of m2 = 10. The T
′ − x1 phase diagram for this system at P

′
= 0.0037

is presented in 7(a). At this pressure the system exhibits VLE, LLE and VLLE. The three-phase line is

at T
′
= 0.091047. Below this temperature, there is a small area of liquid-liquid separation (note the large

scale of the figure), and an even smaller region of VLE. In the LLE region, the difference in mole fraction

between the two phases is of the order 2×10−2, and the difference in packing fraction between these phases

is around 5×10−2. The extreme nature of the phase equilibria in this system is further demonstrated by the

Gibbs free energy of mixing shown in figure 7 (b), which exhibits little curvature. Despite the similarity

of the coexisting phases, the proposed algorithms do not experience any convergence problems around

this liquid-liquid critical point. The details of the calculation at the three-phase line (T
′
= 0.91047 and

P
′
= 0.0037) using the Local+Global algorithm are given in table 5, and the computational details in table

8. The procedure of section 4.5 was employed to refine the composition of the vapour phase.
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5.3.2. Systems D and E: VLE in solvent-polymer systems

We proceed to two test systems with polymers of longer chain lengths, namely m2 = 100 and m2 = 1000.

Chains with more than about 100 segments begin to be representative of low molecular weight polymer

systems [77]. In terms of size difference, the system with m2 = 1000 would correspond to a real system

comprising methane and polyethylene with a molecular mass of around 50,000 g mol−1. The results of

point calculations at P
′
= 0.01 and T

′
= 0.3 for both systems are presented in tables 6 and 7. In figure

8 (a), the T
′ − x1 phase diagram is presented for these systems at a reduced pressure of P

′
= 0.01. The

behaviour of ΔGmix as a function of the mole fraction of component 1 for both systems is also shown in

figure 8 (b). Both systems exhibit VLE at these conditions, and in both cases there is a very low mole

fraction of polymer present in the vapour phase. In system D the vapour phase composition lies within the

original bound of 10−8. This was not the case for system E, however, and the procedure of section 4.5 was

employed to improve the solution.

5.4. Computational performance for binary systems

A summary of the computational performance for the calculations with the binary mixtures, with the various

algorithmic options, is presented in table 8. Both iteration numbers and CPU times are reported. Lower

CPU times could be achieved with a bespoke implementation. The Local+Global algorithm also requires

more overhead than the Global and Global+Constraint versions, because multiple calls are made to the local

nonlinear solver. There is a significant relative cost associated with this in GAMS when the subproblems

are small, as is the case for the binary systems. The identification of all the phases once the first phase

has been found is highly inefficient in the GAMS implementation of all three algorithms as it requires an

additional call to the global solver, and the repetition of many calculations. In table 8, we therefore report

the statistics for the identification of the first stable phase only.

As can be seen in table 8, the first stable phase is identified with certainty in under 4.7s in all cases,

regardless of the type of phase behaviour or the number of phases present. The computational times obtained

with the global and local approaches are relatively similar. On problems with few components, it is not

expected that the use of a local server would result in significant savings. Nevertheless, given the additional

overhead in this implementation, the Local+Global algorithm can be expected to perform slightly better in

a tailored implementation.

The performance of the local version depends greatly on the topology of the A(x,V,T 0) surface. The

presence of multiple local minima for a given inner problem influences the likelihood of convergence to

the global minimum of that inner problem. The initial guesses for the local minimisations are generated

randomly and will also affect the outcome. In the examples studied, five local minimisations seem sufficient

to require only a single use of the global routine, apart from in the case of system B. When the local

minimisation routine is called only twice per inner problem (Nlocal = 2), convergence to a local solution of

the dual occurred in systems B, D and E. This results in the global routine being called twice, rather than

just once as in the calculations where the local solver was called five times (Nlocal = 5). The use of the

global solver at the final major iteration ensures that the solution found is always globally optimal.
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When only global optimisation is employed, the overall iteration count is generally lower, since all itera-

tions are ‘useful’, i.e., add a binding constraint to the outer problem. For some of these binary mixtures,

the Global version is faster than the Global+Constraint. Including the optimality condition on pressure as

a constraint in the global optimisation problem allows the size of the feasible region to be reduced, there-

fore decreasing the size of the search area. However, the inclusion of additional constraints in the global

optimisation problem increases its size.

5.5. Ternary systems modelled with SAFT-HS

We now move onto ternary mixtures modelled with the simplified SAFT-HS EOS. They contain an addi-

tional chain component of m3 spherical segments (m3 > 1), again of diameter σ . This adds an additional

variable to the optimisation problems.

5.5.1. System F: VLE and LLE for a ternary mixture

The mixture comprises a spherical solvent m1 = 1 and two chains with m2 = 10 and m3 = 2. The phase

diagram for this system at P
′
= 0.0037 and T

′
= 0.2 is shown in figure 9 (a). At these conditions, the system

exhibits VLE over a wide range of composition. We carry out a point calculation at an overall composition

of x0 = (0.4,0.1,0.5)T . The details of this phase split are reported in table 9.

We also consider system F at T
′
= 0.091 and P

′
=0.0037. At these conditions the system exhibits a small

region of LLE, close to the solvent apex. The phase diagram for these conditions is shown in figure 9

(b). Note that the phase diagram is now depicted in weight fraction. In terms of mole fraction the two-

phase region would be even smaller. A point calculation is carried out for the global composition x0 =

(0.99,0.01,0.01)T . The details of the phase split obtained for this composition are shown in table 10. The

performance of the various algorithmic options, for both calculations, is examined in table 14.

5.5.2. System G: LLLE and LLE for a ternary mixture

We proceed to a yet more asymmetric ternary mixture, of components with m1 = 1, m2 = 100 and m3 = 10.

At the conditions of P
′
= 0.0037 and T

′
= 0.09, this system exhibits two regions of LLE, and also a region

of LLLE. The phase diagram at these conditions is shown in figure 10. Note again that the phase diagram is

in weight fraction. We conduct point calculations within the two- and three-phase regions. The point within

the two-phase region is at a global composition of x0 = (0.99,0.005,0.005)0, and the properties of the

stable phase split are shown in table 11. The point within the three-phase region is at a global composition

of x0 = (0.99,0.0002,0.0098)0, and the properties of the equilibrium phases are shown in table 12. The

concentration of the longest component in the vapour phase is tiny, and was obtained though the procedure

in section 4.5.

5.5.3. System H: LLLE for a polydisperse mixture

The last ternary mixture for which we show results has been studied in [88]. The model is representative

of a polydisperse solvent-polymer mixture. The component chain lengths are m1 = 1, m2 = 88.8 and

m3 = 1000. The mixture exhibits LLE at some conditions, and also a very small region of LLLE. To

illustrate the complexity of the phase behaviour being studied, we refer to the cloud and shadow curves
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presented in [88]. These are phase diagrams at a fixed weight ratio of the two polymer molecules, and allow

the polymer phase behaviour to be represented over a range of temperatures. Note that this line of fixed

weight ratio does not necessarily lie along a tie-line. The phase diagram for P
′
= 0.01 and T

′
= 0.0828157

is shown in figure 11. We carry out a point calculation for a temperature and composition within the three-

phase region. The Local+Global algorithm accurately identifies the three-phase equilibrium reported in

table 13.

5.6. Computational performance for ternary systems

The computational performance of the algorithms for the ternary systems is presented in table 14. In all

cases, the Global+Local algorithm is considerably faster. The difference between the global and local

options is more significant here than with the binary systems, due to the increased size of the problems.

The topological influence on the outcome of the local minimisations is also more marked here. The local

minimisations on system H converge to a local solution of the dual only once. In contrast, this occurs more

frequently with systems F and G. The longest time is observed for system F (VLE), which requires 27.5s

for global solution of the problem.

The minimum number of iterations required for convergence is also linked to the system topology. Ad-

ditional factors include the starting value of λ , the feed composition, x0, and the required tolerance of

convergence in the outer and inner problems. Therefore, for a given tie-simplex (tie-line for 2-phase equi-

librium, triangle for 3-phase equilibrium), the number of iterations required may vary, depending on the

position of the global composition within the phase simplex.

6. Conclusions

In this contribution, we have proposed a guaranteed deterministic methodology for solving P,T fluid phase

equilibrium for multicomponent mixtures described with general equations of state. The approach is based

on the formulation of phase stability as a dual optimisation problem as described by Mitsos and Barton

[27]. In order to deal seamlessly with cubic or higher-order equations of state, we reformulate the problem

using the Helmholtz free energy, as suggested by Nagarajan et al. [39]. The volume V (or packing fraction)

and composition x are chosen as the independent variables, and we have shown that the dual problem in

the x space and the dual problem in the x−V space have the same solution. The x−V space possesses

several advantageous features. For instance, the Helmholtz free energy is a differentiable function of x

and V , whereas the Gibbs free energy may not be differentiable everywhere, which can cause problems

for gradient-based algorithms. In addition, the computational overheads incurred by repeatedly finding

the appropriate volume root at a specified pressure, for each Gibbs free energy evaluation, can be avoided

by working in this space. This is particularly useful for higher-than-cubic equations of state and for the

development of efficient guaranteed deterministic algorithms.

Having developed the problem formulation, we have presented an algorithm that offers a mathematical

guarantee of identifying all stable phases in a finite number of iterations within the specified convergence

tolerance. The proposed approach is based on the generation of cutting planes at low computational cost,
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via local optimisation. The combined use of local and global solvers (the Local+Global algorithm with

2 local solves) ensures minimal use of the more computationally expensive global optimisation during the

generation of cutting / tangent planes. We have also studied reformulations of the inner problem to speed up

its solution, finding that the addition of the first-order optimality condition with respect to volume leads to

performance improvements. We have discussed how a spatial branch and bound (sBB) global optimisation

algorithm may be used to obtain all stable phases present at equilibrium at little additional computational

expense once the first stable phase has been found. Finally, we have described a strategy for dealing with

components present at very low concentration.

Prototype implementations of the hybrid Local+Global algorithm and two other algorithms based only on

global optimisation have been implemented in GAMS with the AVDW and SAFT-HS EOSs. Several chal-

lenging calculations have been performed, particularly involving components with an asymmetry typical

of polymer-solvent systems. Phase diagrams have been produced to illustrate the reliability of the method.

Thousands of P,T phase equilibrium problems have been solved reliably to produce these phase diagrams,

and no information is carried over from one set of conditions to the next. All systems considered in this pa-

per comprise non-associating components. The presence of associating components leads to an additional

term in the SAFT-HS equation, which is usually evaluated with an inner iteration. One could tackle this

by adopting an interval-Newton technique as in [30]. Another approach would be to treat the system of

equations directly, in the spirit of the volume-composition formulation presented here. This is the direction

we are currently pursuing.

The proof-of-concept results obtained in this paper provide one with confidence that the dual formulation

is a promising tool for the effective solution of phase equilibrium problems. It is based on the alternating

solution of a nonconvex problem and a linear problem, both with up to nc variables, where nc is the number

of components. Furthermore, it is never necessary to guess the number of phases present. We are now

planning to investigate the behaviour of the approach with increasing numbers of components and with

increasingly sophisticated equations. The approach will be particularly useful in fluid phase equilibrium

calculations of anisotropic systems such as liquid crystals, which can also be formulated in the Helmholtz

free energy (see for example refs. [89–92]).
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PROCEDURE Solve Phase Equilibrium(x0,P0,V 0)

Step 1 - Initialisation

(a) Set iteration counter k = 0;

Upper bound UBD = G(x0,P0,V 0);

Lower bound LBD = −∞;

Set of local lower bounds L = /0.

(b) Set λ (0)
i =

(
∂G
∂xi

)
xi=x0

i ,P,T
= g0

i

(c) Initialise set M based on Eqns. (47).

Step 2 - Generation of a cutting plane

Solve the inner problem (IPx,V ) locally Nlocal times at fixed λ k.

If a solution has been found:

Add lowest solution LV,(k) to L .

Add the corresponding variable values (x(k),V (k)) to M .

Else, go to Step 5.

Step 3 - Test need for global optimisation

If UBD−LV,(k) ≤ ε , go to Step 5.

Step 4 - Solve the outer problem (OPx,V )

If the solution λ ∗ is such that |λ ∗
i −λ (k)

i | ≤ εn, i = 1, . . . ,nc−1, go to Step 5;

Else set λ (k+1) = λ ∗ and go to Step 7.

Step 5 - Generation of a tangent plane

Find a global solution LV,∗ of the inner problem (IP
global
x,V ) at fixed λ k.

If LV,∗ > LBD, set LBD = LV,∗ and add (x(k),V (k)) in M by the solution.

Step 6 - Test for overall convergence

If |UBD−LBD| ≤ ε , a stable phase (x(k),V (k),λ (k)) has been found. Go to Step 8.

Step 7 - Increment iteration counter k = k +1 and go to Step 2.

Step 8 - Find all stable phases

Identify and report all global solutions of the inner problem.

END Solve Phase Equilibrium;

Table 1: Proposed algorithm for the solution of the phase equilibrium problem.

Table 2: The stable phases for system A (VLE for a binary system with an AVDW EOS) at T
′
= 0.061295, P

′
= 3× 10−3 and

x0 = [0.7,0.3]

Phase I Phase II

x1 0.8605 0.5351

η 0.0749 0.2875
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Table 3: Iterations of Local+Global algorithm to identify the stable phases present in system A (VLE for a binary system with an

AVDW EOS) at T
′
= 0.061295, P

′
= 3× 10−3 and x0 = 0.7. GP = −4.1034263054 and λ 1(gradient at x0)=2.7229698414. Major

iterations for which a global solution of the inner problem is required are indicated by ∗. The order of calculations at each iteration is

as follows: (1) solution of the minimisation (IPx,V ) at fixed λ to obtain a (local) lower bound, a new x1 and a new η ; (2) solution of the

maximisation (OPx,V ) using all values of x1 found so far to obtain an upper bound and a new λ . The stopping criterion is convergence

of the outer and inner problems of (UBD j −LBD j) < 1x10−7.

Iteration UB LB λ x1 η

1 -4.10343 -4.16237 2.40547 0.88564 0.07179

2 -4.12448 -4.14823 2.51889 0.49061 0.30062

3 -4.12588 -4.12695 2.51221 0.86053 0.07491

4 -4.12694 -4.12806 2.51884 0.53230 0.28839

5 -4.12695 -4.12695 2.51887 0.53509 0.28751

6∗ -4.12695 -4.12695 2.51887 0.53510 0.28751

Table 4: Stable phases for system B (VLLE for a binary system for an AVDW EOS) at T
′
= 0.051865 and P

′
= 0.00249810. x0 =

[0.5,0.5]

Phase I Phase II Phase III

x1 0.6138 0.4703 0.9281

η 0.3035 0.3425 0.0878

Table 5: Stable phases for system C (VLLE for an asymmetric binary system with SAFT-HS, solvent m1=1, polymer m2=10) at

T
′
= 0.091047, P

′
= 0.0037 and x0

1 = 0.99

Phase I Phase II Phase III

x1 1.0000 (x2=4.8×10−9) 0.9987 0.9687

η 0.0754 0.2073 0.2908

Table 6: Stable phases for system D (VLE for an asymmetric binary system with SAFT-HS, solvent m1=1, polymer m2=100) at

T
′
= 0.3, P

′
= 0.01 and x0

1 = 0.99

Phase I Phase II

x1 1.0000 (x2=9.9×10−7) 0.9530

η 0.0326 0.1526
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Table 7: Stable phases for system E (VLE for an asymmetric binary system with SAFT-HS, solvent m1=1, polymer m2=1000) at

T
′
= 0.3, P

′
= 0.01 and x0

1 = 0.999

Phase I Phase II

x1 1.0000 (x2=10−46) 0.9946

η 0.0323 0.1599

Table 8: Computational results for point calculations in binary systems (A to E). Nlocal is the number of local solves carried out per

inner problem.

System Method Major Local Global Opt Total Global

Iterations Solves Solves CPU (s) CPU (s)

A Global 6 - 6 3.3 3.3

A Global + constraint 6 - 6 3.1 3.1

A Local + global:Nlocal = 2 6 12 1 2.8 0.5

A Local + global:Nlocal = 5 6 30 1 4.8 0.4

B Global 4 - 4 2.0 2.0

B Global + constraint 4 - 4 1.6 1.6

B Local + global:Nlocal = 2 4 8 2 2.8 1.2

B Local + global:Nlocal = 5 4 20 2 4.3 1.2

C Global 5 - 5 3.4 3.4

C Global + constraint 5 - 5 4.1 4.1

C Local + global:Nlocal = 2 5 10 1 2.4 0.6

C Local + global:Nlocal = 5 5 25 1 4.2 0.6

D Global 6 - 6 4.3 4.3

D Global + constraint 5 - 5 4.4 4.4

D Local + global:Nlocal = 2 8 16 2 4.1 1.36

D Local + global:Nlocal = 5 6 30 1 4.9 0.7

E Global 5 - 5 5.8 5.8

E Global + constraint 5 - 5 5.8 5.8

E Local + global:Nlocal = 2 8 16 2 4.7 1.8

E Local + global:Nlocal = 5 7 35 1 6.0 1.0

Table 9: Stable phases for VLE in system F (asymmetric ternary system with SAFT-HS, m1=1, m2=10, m3=2) at T
′
= 0.2, P

′
= 0.0037

and x0 = (0.4,0.1,0.5)T

Phase I Phase II

x1 0.2225 0.4550

x2 0.3755 0.0148

η 0.1952 0.0340
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Table 10: Stable phases for LLE in system F (asymmetric ternary system with SAFT-HS, m1=1, m2=10, m3=2) at P
′
= 0.0037,T

′
=

0.091 and x0 = (0.98,0.01,0.01)T

Phase I Phase II

x1 0.9876 0.9656

x2 0.0030 0.0229

η 0.2247 0.2800

Table 11: Stable phases for LLE in system G (asymmetric ternary system with SAFT-HS, m1=1, m2=100, m3=10) at P
′
= 0.0037,T

′
=

0.09 and x0 = (0.99,0.005,0.005)T

Phase I Phase II

x1 0.9996 0.9854

x2 2.2×10−16 0.0074

η 0.2150 0.3408

Table 12: Stable phases for LLLE in system G (asymmetric ternary system with SAFT-HS, m1=1, m2=100, m3=10) at P
′
=

0.0037,T
′
= 0.09 and x0 = (0.99,0.0002,0.0098)T

Phase I Phase II Phase III

x1 0.9798 0.9953 0.9678

x2 10−5 10−12 0.0013

η 0.2781 0.2364 0.3116

Table 13: Stable phases for LLLE in system H (asymmetric ternary system with SAFT-HS, m1=1, m2=88.8, m3=1000) at P
′
= 0.01,

T
′
= 0.0828157 and x0 = (0.998701035,0.001283133,1.5832 ×10−5)T

Phase I Phase II Phase III

x1 0.999088 0.998583 0.999301

x2 0.000912 0.001397 0.000699

η 0.318935 0.327782 0.315933
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Table 14: Computational results for point calculations in ternary systems (F to H). Nlocal is the number of local solves carried out per

inner problem.

System Method Major Local Global Opt Total Global

Iterations Solves Solves CPU (s) CPU (s)

F (VLE) Global 14 - 14 103.0 103.0

F Global + constraint 14 - 14 67.0 67.0

F Local + global:Nlocal = 2 19 38 5 36.4 28.4

F Local + global:Nlocal = 5 18 90 2 27.5 12.9

F Local + global:Nlocal = 15 14 210 1 34.7 5.5

F (LLE) Global 9 - 9 44.9 44.9

F Global + constraint 9 - 9 36.6 36.6

F Local + global:Nlocal = 2 14 28 3 19.7 13.4

F Local + global:Nlocal = 5 14 70 2 21.2 9.1

F Local + global:Nlocal = 15 11 165 1 28.0 4.5

G (LLE) Global 21 - 21 190.8 190.8

G Global + constraint 21 - 21 155.4 155.4

G Local + global:Nlocal = 2 22 44 4 25.3 16.4

G Local + global:Nlocal = 5 21 105 1 20.7 3.9

G Local + global:Nlocal = 15 21 315 1 46.7 4.1

G (LLLE) Global 15 - 15 72.2 72.2

G Global + constraint 13 - 13 65.2 65.2

G Local + global:Nlocal = 2 14 28 1 11.0 4.6

G Local + global:Nlocal = 5 17 85 1 18.3 4.5

G Local + global:Nlocal = 15 16 240 1 37.2 4.6

H (LLLE) Global 17 - 17 194.4 194.4

H Global + constraint 17 - 17 191.4 191.4

H Local + global:Nlocal = 2 24 48 1 19.1 9.4

H Local + global:Nlocal = 5 19 95 2 37.0 21.8

H Local + global:Nlocal = 15 19 285 1 46.6 7.5
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Figure 1: The geometrical interpretation of a Lagrangian dual problem for a one-dimensional problem with one linear constraint

(adapted from [46]).
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Figure 2: A sketch of G(x1,T 0,P0) and its convex hull as a function of x1 for a system binary that exhibits liquid-liquid separation.

G(x1,T 0,P0) is shown as a thin continuous curve, and the convex hull as a thick dashed curve. If x0
1 < xα

1 or x0
1 > xβ

1 , G(x1,T 0,P0)

is equal to its convex hull, therefore the stable configuration is a single phase of composition x0. A system with a total composition

x0
1 ∈ [xα

1 ,xβ
1 ] is unstable or metastable, as G(x1,P0,T 0) is strictly underestimated by its convex hull. It therefore separates into two

phases of compositions xα and xβ

.
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Figure 3: A schematic representation of the concave dual objective function θ(λ ) and the cutting / tangent planes used to provide a

monotonically decreasing upper bound on the solution of the dual problem, in a binary system. Note that the curvature of the dual

function is exaggerated for visual clarity. The state of the dual problem after two min/max cycles (after iteration 2) is shown here. At

the first iteration, λ (0) is g0, the gradient of the Gibbs free energy surface at x0. L1, the tangent to the θ(λ ) curve at λ (0) is the tangent

plane given by the global solution of the inner problem for λ (0). The solution of the outer problem for the first time, bounded by this

plane and GP, does not reduce the value of the upper bound (UBD1 = GP), but does furnish a new value for the Lagrange multiplier,

λ (1). The inner problem is solved for λ (1), providing a second tangent plane, L2. The solution of the outer problem with the additional

bound that this provides leads to a reduction in the value of the upper bound i.e., UBD1 > UBD2. The dot-dash line is a cutting plane

obtained from a non-global solution of the inner problem for λ (0). If this were used in the outer problem instead of the tangential

plane for λ (0), a different value of λ (1) would be obtained.
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Figure 4: Flowchart of the Local+Global algorithm for the global solution of dual problem (Dx,V ).
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(a) (b)

(c) (d)

Figure 5: System A (VLE for a binary system with an AVDW EOS). (a) P
′ −x1 diagram at T

′
= 0.061295. The solid line corresponds

to the phase boundary and the dashed line to P
′
= 0.003. x1 is the mole fraction of component 1 in the mixture. (b) The Gibbs free

energy of mixing at T
′
= 0.061295 and P

′
= 0.003. The filled circles are the stable equilibrium phases present at these conditions. (c)

The dual objective function θ(λ ) at T
′
= 0.061295 and P

′
= 0.003. The maximal value of θ(λ ) lies at the λ corresponding to the

equilibrium chemical potential, indicated by the vertical dashed line. (d) The set G at T
′
= 0.061295 and P

′
= 0.003. This corresponds

to the example shown in figure 1. The lower boundary is the Gibbs free energy surface, G(x,P0,T 0). The dashed line is the supporting

tangent plane at the solution of the dual. The stable equilibrium phases, are indicated by the vertical arrows.
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(a) (b)

Figure 6: System B (VLLE for a binary system for an AVDW EOS). (a) P
′ −x1 diagram at T

′
= 0.051865. The solid line corresponds

to the phase boundary and the dashed line to the three-phase pressure of P
′
= 0.0024981. (b) The Gibbs free energy of mixing at

T
′
= 0.051865 and P

′
= 0.0024981. The filled circles are the stable equilibrium phases present at these conditions. x1 is the mole

fraction of component 1 in the mixture.

(a) (b)

Figure 7: System C (LLE for an asymmetric binary system with SAFT-HS, solvent m1=1, polymer m2=10). (a) T
′ − x1 diagram

showing VLE, LLE and VLLE at P
′
= 0.0037. The solid line corresponds to the phase boundary. The liquid-liquid critical point is

indicated by a filled circle, and the three-phase temperature of T
′
= 0.051865 by a dashed line. (b) The Gibbs free energy of mixing at

P
′
= 0.0037 and T

′
= 0.051865. The filled circles are the stable equilibrium phases present at these conditions. x1 is the mole fraction

of component 1 in the mixture.
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(a) (b)

Figure 8: Systems D and E (VLE for asymmetric binary systems with SAFT-HS, solvent m1=1, polymer m2=100 and solvent m1=1,

polymer m2=1000, respectively). (a) T
′ −x1 plots showing VLE in systems D (dash-dot curve) and E (continuous curve), at P

′
= 0.01.

The dashed horizonal line indicates T
′
= 0.3. (b) The Gibbs free energy of mixing in systems D (dash-dot) and E (continuous) at

T
′
= 0.3 and P

′
= 0.01. The filled circles are the stable equilibrium phases present at these conditions, marked on each system. x1 is

the mole fraction of component 1 in the mixture.

(a) (b)

Figure 9: System F (asymmetric ternary system with SAFT-HS, m1=1, m2=10, m3=2) phase diagrams at P
′
= 0.0037. (a) T

′
= 0.2.

Representation in mole fraction. The filled diamond indicates the feed composition used in the point calculation, x0 = (0.4,0.1,0.5)T .

(b) T
′
= 0.091. Representation in mass fraction. In both (a) and (b), the filled circles are the equilibrium phase compositions and the

dotted lines the tie lines.
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Figure 10: LLE and LLLE regions for system G (asymmetric ternary system with SAFT-HS, m1=1, m2=100, m3=10) at P
′
= 0.0037

and T
′
= 0.09. The representation is in weight fraction. The filled circles are the equilibrium phase compositions and the dotted lines

the tie lines. The three-phase region is outlined by a solid triangle. The point calculation compositions are marked as follows: The cross

inside the region of three-phase equilibrium (LLLE) indicates a global composition with mole fraction x0 = (0.99,0.0002,0.0098)T .

The filled triangle inside the two-phase region indicates a global composition of x0 = (0.99,0.005,0.005)T .

Figure 11: LLE and LLLE for system H (asymmetric ternary system with SAFT-HS, m1=1, m2=88.8, m3=1000) at T
′
= 0.0828157

and P
′
= 0.01. The representation is in weight fraction. The filled circles indicate the compositions of equilibrium phases and the

dashed lines are tie lines. The solid triangle outlines the three-phase (LLLE) region.
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Appendix A. Equivalence of using packing fraction and volume in the inner problem

The mathematical development of the dual formulation is presented throughout the paper in terms of the

variable volume, V . As mentioned in section 5, in our GAMS implementation of the inner problem for this

algorithm, we use the variable set x (composition) and η (packing fraction). η has the desirable property of

having clearly defined bounds. In addition, the common SAFT EOSs are often formulated in this variable.

In this appendix, we show the equivalence of the lower bounding problem solved in η to that solved in V .

We show that the solution to the lower bounding problem lies at the specified pressure, P0, and that the

meaning of λ remains unchanged. We begin by defining the relationship between η and V , where η is an

arbitrary function of x and V :

V =
f (x,T 0)

η
, (A.1)

where f is a function that depends on the equation of state used. We will first examine the relationship

between the derivatives of the Helmholtz free energy with respect to η and V . We begin by obtaining the

derivatives of η with V and xi:(
∂η
∂V

)
x
= − f (x,T 0)

V 2
= − f (x,T 0)η2

f (x,T 0)2
= − η2

f (x,T 0)
, (A.2)

and, (
∂η
∂xi

)
x j �=i,V

=
1

V

(
∂ f
∂xi

)
x j �=i

=
η

f (x,T 0)

(
∂ f
∂xi

)
x j �=i

, i = 1, ...,nc−1. (A.3)

We define a Helmholtz free energy in x and η :

A′(x,η ;T 0) = A(x,V,T 0). (A.4)

Then,

A′(x,η ;T 0) =
nc−1

∑
i=1

(
∂A′

∂xi

)
x j �=i,η

dxi +
(

∂A′

∂η

)
x
dη . (A.5)

We obtain the derivatives of A′(x,η ;T 0) with respect to composition and volume, for use later in this

appendix. We begin with the volume derivatives,(
∂A′

∂V

)
x
=

(
∂A
∂V

)
x
=

nc−1

∑
i=1

(
∂A′

∂xi

)
x j �=i,η

(
dxi

dV

)
x
+

(
∂A′

∂η

)
x

(
dη
dV

)
x
, (A.6)

remarking that(
dxi

dV

)
x
= 0, (A.7)

Combination of eqs. (A.2) and (A.6) yields:(
∂A′

∂V

)
x
= − η2

f (x,T 0)

(
∂A′

∂η

)
x
. (A.8)
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We may apply a similar treatment to the composition derivatives:(
∂A′

∂xi

)
x j �=i,V

=
(

∂A
∂xi

)
x j �=i,V

=
(

∂A′

∂xi

)
x j �=i,η

+
(

∂A′

∂η

)
x

(
dη
dxi

)
x j �=i,V

,

i = 1, ...,nc−1. (A.9)

and combine eqs. (A.3) and (A.9) to yield:(
∂A′

∂xi

)
x j �=i,V

=
(

∂A′

∂xi

)
x j �=i,η

+
η

f (x,T 0)

(
∂ f
∂xi

)
x j �=i

(
∂A′

∂η

)
x
, i = 1, ...,nc−1. (A.10)

The inner problem, as defined by eqn. (45), is a minimisation in x and V . However, we wish to define the

inner problem as a minimization in x and η . The Lagrangian, L
′
, in terms of these variables is:

L′(x,η ,λ ′) = A′(x,η ;T 0)+
P0 f (x,T 0)

η
+

nc−1

∑
i=1

λ
′
i (x

0
i − xi) (A.11)

The first order optimality conditions for a minimization of eqn. (A.11) are:(
∂L′

∂xi

)
x j �=i,η

= 0 =
(

∂A′

∂xi

)
x j �=i,η

+
P0

η

(
∂ f
∂xi

)
x j �=i

−λ ′
i , (A.12)

and, (
∂L′

∂η

)
x
= 0 =

(
∂A′

∂η

)
x
− P0 f (x,T 0)

η2
. (A.13)

Combining eqn. (A.8) and eqn. (A.13),

−
(

∂A
∂V

)
x

f (x,T 0)
η2

− P0 f (x,T 0)
η2

= 0, (A.14)

therefore,(
∂A
∂V

)
x
+P0 = 0, (A.15)

so that, at the solution of the inner problem in x and η ,

P = P0. (A.16)

Now to prove the equivalence of λ in the two spaces, we remark from eqn. (A.8) that(
∂A′

∂η

)
x
= P

f (x,T 0)
η2

, (A.17)

hence at the solution of the inner problem the following expression holds:(
∂A′

∂η

)
x
= P0 f (x,T 0)

η2
. (A.18)

Combining the KKT conditions eqn. (A.12) with eqn. (A.10) produces,

(
∂A′

∂xi

)
x j �=i,V

− η
f (x,T 0)

(
∂ f
∂xi

)
x j �=i

(
∂A′

∂η

)
x
+

P0

η

(
∂ f
∂xi

)
x j �=i

−λ ′
i = 0,

for i = 1, ..,nc−1. (A.19)
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Finally, using eqn. (A.18), at the solution,(
∂A′

∂xi

)
x j �=i,V

−λ ′
i = 0 (A.20)

i.e., the Lagrange multipliers in the (x,η) space and the (x,V ) space are equivalent:

λ
′
i = λi, for i = 1, ..,nc−1 (A.21)
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