273 research outputs found
Noise auto-correlation spectroscopy with coherent Raman scattering
Ultrafast lasers have become one of the most powerful tools in coherent
nonlinear optical spectroscopy. Short pulses enable direct observation of fast
molecular dynamics, whereas broad spectral bandwidth offers ways of controlling
nonlinear optical processes by means of quantum interferences. Special care is
usually taken to preserve the coherence of laser pulses as it determines the
accuracy of a spectroscopic measurement. Here we present a new approach to
coherent Raman spectroscopy based on deliberately introduced noise, which
increases the spectral resolution, robustness and efficiency. We probe laser
induced molecular vibrations using a broadband laser pulse with intentionally
randomized amplitude and phase. The vibrational resonances result in and are
identified through the appearance of intensity correlations in the noisy
spectrum of coherently scattered photons. Spectral resolution is neither
limited by the pulse bandwidth, nor sensitive to the quality of the temporal
and spectral profile of the pulses. This is particularly attractive for the
applications in microscopy, biological imaging and remote sensing, where
dispersion and scattering properties of the medium often undermine the
applicability of ultrafast lasers. The proposed method combines the efficiency
and resolution of a coherent process with the robustness of incoherent light.
As we demonstrate here, it can be implemented by simply destroying the
coherence of a laser pulse, and without any elaborate temporal scanning or
spectral shaping commonly required by the frequency-resolved spectroscopic
methods with ultrashort pulses.Comment: To appear in Nature Physic
Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956β2004
In the 1950s, the Mayak nuclear weapons facility in Russia discharged liquid radioactive wastes into the Techa River causing exposure of riverside residents to protracted low-to-moderate doses of radiation. Almost 10β000 women received estimated doses to the stomach of up to 0.47 Gray (Gy) (mean dose=0.04βGy) from external Ξ³-exposure and 137Cs incorporation. We have been following this population for cancer incidence and mortality and as in the general Russian population, we found a significant temporal trend of breast cancer incidence. A significant linear radiation doseβresponse relationship was observed (P=0.01) with an estimated excess relative risk per Gray (ERR/Gy) of 5.00 (95% confidence interval (CI), 0.80, 12.76). We estimated that approximately 12% of the 109 observed cases could be attributed to radiation
Distortions of Subjective Time Perception Within and Across Senses
Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood.
Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations.
Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
RNA-Seq Analyses Generate Comprehensive Transcriptomic Landscape and Reveal Complex Transcript Patterns in Hepatocellular Carcinoma
RNA-seq is a powerful tool for comprehensive characterization of whole transcriptome at both gene and exon levels and with a unique ability of identifying novel splicing variants. To date, RNA-seq analysis of HBV-related hepatocellular carcinoma (HCC) has not been reported. In this study, we performed transcriptome analyses for 10 matched pairs of cancer and non-cancerous tissues from HCC patients on Solexa/Illumina GAII platform. On average, about 21.6 million sequencing reads and 10.6 million aligned reads were obtained for samples sequenced on each lane, which was able to identify >50% of all the annotated genes for each sample. Furthermore, we identified 1,378 significantly differently expressed genes (DEGs) and 24, 338 differentially expressed exons (DEEs). Comprehensive function analyses indicated that cell growth-related, metabolism-related and immune-related pathways were most significantly enriched by DEGs, pointing to a complex mechanism for HCC carcinogenesis. Positional gene enrichment analysis showed that DEGs were most significantly enriched at chromosome 8q21.3β24.3. The most interesting findings were from the analysis at exon levels where we characterized three major patterns of expression changes between gene and exon levels, implying a much complex landscape of transcript-specific differential expressions in HCC. Finally, we identified a novel highly up-regulated exon-exon junction in ATAD2 gene in HCC tissues. Overall, to our best knowledge, our study represents the most comprehensive characterization of HBV-related HCC transcriptome including exon level expression changes and novel splicing variants, which illustrated the power of RNA-seq and provided important clues for understanding the molecular mechanisms of HCC pathogenesis at system-wide levels
Human U87 Astrocytoma Cell Invasion Induced by Interaction of Ξ²ig-h3 with Integrin Ξ±5Ξ²1 Involves Calpain-2
It is known that Ξ²ig-h3 is involved in the invasive process of many types of tumors, but its mechanism in glioma cells has not been fully clarified. Using immunofluorescent double-staining and confocal imaging analysis, and co-immunoprecipitation assays, we found that Ξ²ig-h3 co-localized with integrin Ξ±5Ξ²1 in U87 cells. We sought to elucidate the function of this interaction by performing cell invasion assays and gelatin zymography experiments. We found that siRNA knockdowns of Ξ²ig-h3 and calpain-2 impaired cell invasion and MMP secretion. Moreover, Ξ²ig-h3, integrins and calpain-2 are known to be regulated by Ca2+, and they are also involved in tumor cell invasion. Therefore, we further investigated if calpain-2 was relevant to Ξ²ig-h3-integrin Ξ±5Ξ²1 interaction to affect U87 cell invasion. Our data showed that Ξ²ig-h3 co-localized with integrin Ξ±5Ξ²1 to enhance the invasion of U87 cells, and that calpain-2, is involved in this process, acting as a downstream molecule
Tracking the cell cycle origins for escape from topotecan action by breast cancer cells
The anticancer agent topotecan is considered to be S-phase specific. This implies that cancer cells that are not actively replicating DNA could resist the effects of the drug. The cycle specificity of topotecan action was investigated in MCF-7 cells, using time-lapse microscopy to link the initial cell cycle position during acute exposures to topotecan with the antiproliferative consequences for individual cells. The bioactive dose range (0.5β10βΞΌM) for 1-h topotecan exposures was defined by rapid drug delivery and topoisomerase I trapping. Topotecan caused pan-cycle induction and activation of p53. Lineage analysis of the time-lapse sequences identified cells initially in S-phase and G2, and defined the time to mitosis for cells originating from G2, S-phase and G1. Topotecan prevented all mitoses from S-phase cells and G1 cells (half-maximal effects at 0.14βΞΌM and 0.96βΞΌM, respectively). No dose of topotecan completely prevented mitosis among G2 cells, and at saturating doses of topotecan about half the cells of G2 origin continued dividing (the half-maximal effects was at 0.31βΞΌM). Overall, topotecan differentially targeted G1-, S- and G2-phase cells, but many G2 cells were resistant to topotecan, presenting a clear route for cell cycle-mediated drug resistance
- β¦